講一下numpy的矩陣特征值分解與奇異值分解


1、特征值分解

主要還是調包:

from numpy.linalg import eig

 

特征值分解:  A = P*B*PT  當然也可以寫成 A = QT*B*Q  其中B為對角元為A的特征值的對角矩陣,P=QT

 

首先A得對稱正定,然后才能在實數域上分解,

>>> A = np.random.randint(-10,10,(4,4))
>>> A
array([[  6,   9, -10,  -1],
       [  5,   9,   5,  -5],
       [ -8,   7,  -4,   4],
       [ -1,  -9,   0,   6]])

>>> C = np.dot(A.T, A)
>>> C
array([[126,  52,  -3, -69],
       [ 52, 292, -73, -80],
       [ -3, -73, 141, -31],
       [-69, -80, -31,  78]])

>>> vals, vecs = eig(C)
>>> vals
array([357.33597086, 174.10172008,   8.84429957,  96.71800949])
>>> vecs
array([[-0.28738314, -0.51589436, -0.38221983, -0.71075449],
       [-0.87487263,  0.12873861, -0.24968051,  0.39456798],
       [ 0.2572149 , -0.69304313, -0.33950158,  0.58161018],
       [ 0.29300052,  0.48679627, -0.82237845, -0.02955945]])

故使用時應先將特征值轉換為矩陣:

>>> Lambda = np.diag(vals)
>>> Lambda
array([[357.33597086,   0.        ,   0.        ,   0.        ],
       [  0.        , 174.10172008,   0.        ,   0.        ],
       [  0.        ,   0.        ,   8.84429957,   0.        ],
       [  0.        ,   0.        ,   0.        ,  96.71800949]])

>>> np.dot(np.dot(vecs, Lambda), vecs.T) # 與C=A.T*A相等
array([[126.,  52.,  -3., -69.],
       [ 52., 292., -73., -80.],
       [ -3., -73., 141., -31.],
       [-69., -80., -31.,  78.]])

>>> np.dot(np.dot(vecs.T, Lambda), vecs)
array([[171.65817919,  45.58778569,  53.20435074,  13.37512137],
       [ 45.58778569, 125.15670964,  28.22684299, 134.91290105],
       [ 53.20435074,  28.22684299, 129.48789571,  80.5284382 ],
       [ 13.37512137, 134.91290105,  80.5284382 , 210.69721545]])

 

故驗證了使用np中的eig分解為A=P*B*PT 而不是A=QT*B*Q,其中P=vecs

即 C = vecs * np.diag(vals) * vecs.T # 這里簡寫*為矩陣乘法 

 

然后再來看使用np中的eig分解出來的vec中行向量是特征向量還是列向量是特征向量,只需驗證:A*vecs[0] = vals[0]*vecs[0]

>>> np.dot(C, vecs[0])
array([-12.84806258, -80.82266859,   6.66283128,  17.51094927])
>>> vals[0]*vecs[0]
array([-102.69233303, -184.34761071, -136.58089252, -253.97814676])

>>> np.dot(C, vecs[:,0])
array([-102.69233303, -312.62346098,   91.91213634,  104.69962583])
>>> vals[0]*vecs[:, 0]
array([-102.69233303, -312.62346098,   91.91213634,  104.69962583])

后者兩個是相等的,故使用np中的eig分解出的vecs的列向量是特征向量。

然后我們可以驗證P是單位正交矩陣

>>> np.dot(vecs.T, vecs)
array([[ 1.00000000e+00, -7.13175042e-17, -2.45525952e-18,
         2.75965773e-16],
       [-7.13175042e-17,  1.00000000e+00,  2.49530948e-17,
        -5.58839097e-16],
       [-2.45525952e-18,  2.49530948e-17,  1.00000000e+00,
        -7.85564967e-17],
       [ 2.75965773e-16, -5.58839097e-16, -7.85564967e-17,
         1.00000000e+00]])

>>> np.dot(vecs, vecs.T)
array([[ 1.00000000e+00,  2.97888865e-16, -2.68317972e-16,
         1.69020590e-16],
       [ 2.97888865e-16,  1.00000000e+00, -4.40952204e-18,
        -6.24188690e-17],
       [-2.68317972e-16, -4.40952204e-18,  1.00000000e+00,
        -1.13726775e-17],
       [ 1.69020590e-16, -6.24188690e-17, -1.13726775e-17,
         1.00000000e+00]])

# 可以看到除對角元外其他都是非常小的數

PT*P = P*PT = E , PT=P-1。事實上,在求解P的過程中就使用了施密特正交化過程。

另一方面,我們從數學角度來看:

首先補充一些數學知識:可以看我另一篇文章:矩陣知識

A = P*B*P-1  ,其中B為對角元素為A的特征值的對角陣,P的列向量為特征值對應的特征向量(因為B每行乘以P每列)

 

 

 

2、奇異值分解

還是調包:

from numpy.linalg import svd

設任意矩陣A是m*n矩陣

奇異值分解:A = U*Σ*VT , 其中U為滿足UTU=E的m階(m*m)酉矩陣,Σ為對角線上為奇異值σi 其他元素為0的廣義m*n對角陣,V為滿足VTV=E的n階(n*n)酉矩陣

a = np.random.randint(-10,10,(4, 3)).astype(float)

'''
array([[ -9.,   3.,  -7.],
       [  4.,  -8.,  -1.],
       [ -1.,   6.,  -9.],
       [ -4., -10.,   2.]])
'''

In [53]: u, s, vh = np.linalg.svd(a)    # 這里vh為V的轉置

In [55]: u.shape, s.shape, vh.shape
Out[55]: ((4, 4), (3,), (3, 3))

'''
In [63]: u
Out[63]:
array([[-0.53815289,  0.67354057, -0.13816841, -0.48748749],
       [ 0.40133556,  0.1687729 ,  0.78900752, -0.43348888],
       [-0.59291924,  0.04174708,  0.59180987,  0.54448603],
       [ 0.44471115,  0.71841213, -0.09020922,  0.52723647]])

In [64]: s
Out[64]: array([16.86106528, 11.07993065,  7.13719934])

In [65]: vh
Out[65]:
array([[ 0.31212695, -0.760911  ,  0.56885078],
       [-0.74929793, -0.56527432, -0.3449892 ],
       [ 0.58406282, -0.31855829, -0.74658639]])
'''


In [56]: np.allclose(a, np.dot(u[:, :3] * s, vh))
Out[56]: True


# 將s轉化為奇異值矩陣
In [60]: smat[:3, :3] = np.diag(s)

In [61]: smat
Out[61]:
array([[16.86106528,  0.        ,  0.        ],
       [ 0.        , 11.07993065,  0.        ],
       [ 0.        ,  0.        ,  7.13719934],
       [ 0.        ,  0.        ,  0.        ]])


# 驗證分解的正確性
In [62]: np.allclose(a, np.dot(u, np.dot(smat, vh)))
Out[62]: True

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM