Faster RCNN算法訓練代碼解析(1)


這周看完faster-rcnn后,應該對其源碼進行一個解析,以便后面的使用。

那首先直接先主函數出發py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py

我們在后端的運行命令為

python  ./py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py

--gpu
0
--net_name
ZF
--weights
data/imagenet_models/ZF.v2.caffemodel
--imdb
voc_2007_trainval
--cfg
experiments/cfgs/faster_rcnn_alt_opt.yml

從這條命令就可以看出,我們是使用0id的GPU,使用ZF網絡,預訓練模型使用ZF.v2.caffemodel,數據集使用voc_2007_trainval,配置文件cfg使用faster_rcnn_alt_opt.yml。

 

先進入主函數:

if __name__ == '__main__':
    args = parse_args() #獲取命令行參數
    #Namespace(cfg_file='experiments/cfgs/faster_rcnn_alt_opt.yml', gpu_id=0, imdb_name='voc_2007_trainval', 
#net_name='ZF', pretrained_model='data/imagenet_models/ZF.v2.caffemodel', set_cfgs=None)

   print('Called with args:') print(args) if args.cfg_file is not None: ##配置文件存在,則加載配置文件 cfg_from_file(args.cfg_file) ##進入config.py文件,通過yaml加載后使用edict轉化格式,然后通過_merge_a_into_b(a, b)迭代融合成一個config if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.GPU_ID = args.gpu_id ##設置使用的GPU的id,一般直接為0 # -------------------------------------------------------------------------- # Pycaffe doesn't reliably free GPU memory when instantiated nets are # discarded (e.g. "del net" in Python code). To work around this issue, each # training stage is executed in a separate process using # multiprocessing.Process. # -------------------------------------------------------------------------- # queue for communicated results between processes mp_queue = mp.Queue() ##創建一個多線程的對象 # solves, iters, etc. for each training stage solvers, max_iters, rpn_test_prototxt = get_solvers(args.net_name) ##獲得solvers等信息

進入get_solvers()函數:

def get_solvers(net_name): ##ZF net
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'  ##采取alt_opt訓練方式
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]  ##記錄該訓練方式的各階段的solver(訓練參數),即rpn訓練和整體faster_rcnn訓練的slover
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000] 
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')  ##記錄rpn測試的prototext,即rpn測試時的網絡結構
    return solvers, max_iters, rpn_test_prototxt

接着回到主函數里面,開始第一階段的訓練:

  print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
    print 'Stage 1 RPN, init from ImageNet model'
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'

    cfg.TRAIN.SNAPSHOT_INFIX = 'stage1'
    mp_kwargs = dict(
            queue=mp_queue, 
            imdb_name=args.imdb_name,  ##'voc_2007_trainval'
            init_model=args.pretrained_model, ##使用預訓練模型'data/imagenet_models/ZF.v2.caffemodel'
            solver=solvers[0],  ##'py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt'
            max_iters=max_iters[0],  ##最大迭代次數80000
            cfg=cfg) 
    p = mp.Process(target=train_rpn, kwargs=mp_kwargs) ##設置進程對象,進程執行train_rpn函數,使用mp_kwargs參數
    p.start()
    rpn_stage1_out = mp_queue.get() ##獲取線程中的數據,這里屬於進程間的通信
    p.join() ##等待子線性結束

接着進入train_rpn()函數來看看:

def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
              max_iters=None, cfg=None):
    """Train a Region Proposal Network in a separate training process.
    """
    ##注意,第一階段的訓練沒有使用任何的建議框,而是使用gt_boxes來訓練
    
    cfg.TRAIN.HAS_RPN = True
    cfg.TRAIN.BBOX_REG = False  # 只針對 Fast R-CNN bbox regression來開啟該選項
    cfg.TRAIN.PROPOSAL_METHOD = 'gt' #默認使用gt來進行區域建議
    cfg.TRAIN.IMS_PER_BATCH = 1
    print 'Init model: {}'.format(init_model)
    print('Using config:')
    pprint.pprint(cfg)  ##pprint專門打印python數據結構類

    import caffe
    _init_caffe(cfg) ##初始化caffe,設置了隨機數種子,以及使用caffe訓練時的模式(gpu/cpu)

    roidb, imdb = get_roidb(imdb_name)
    print 'roidb len: {}'.format(len(roidb))
    output_dir = get_output_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    model_paths = train_net(solver, roidb, output_dir,
                            pretrained_model=init_model,
                            max_iters=max_iters)
    # Cleanup all but the final model
    for i in model_paths[:-1]:
        os.remove(i)
    rpn_model_path = model_paths[-1]
    # Send final model path through the multiprocessing queue
    queue.put({'model_path': rpn_model_path})
 pprint.pprint(cfg)打印出來的config的配置項:
Using config:
{'DATA_DIR': '/home/home/FRCN_ROOT/py-faster-rcnn/data',
 'DEDUP_BOXES': 0.0625,
 'EPS': 1e-14,
 'EXP_DIR': 'faster_rcnn_alt_opt',
 'GPU_ID': 0,
 'MATLAB': 'matlab',
 'MODELS_DIR': '/home/home/FRCN_ROOT/py-faster-rcnn/models/pascal_voc',
 'PIXEL_MEANS': array([[[ 102.9801,  115.9465,  122.7717]]]),
 'RNG_SEED': 3,
 'ROOT_DIR': '/home/home/FRCN_ROOT/py-faster-rcnn',
 'TEST': {'BBOX_REG': True,
          'HAS_RPN': True,
          'MAX_SIZE': 1000,
          'NMS': 0.3,
          'PROPOSAL_METHOD': 'selective_search',
          'RPN_MIN_SIZE': 16,
          'RPN_NMS_THRESH': 0.7,
          'RPN_POST_NMS_TOP_N': 300,
          'RPN_PRE_NMS_TOP_N': 6000,
          'SCALES': [600],
          'SVM': False},
 'TRAIN': {'ASPECT_GROUPING': True,
           'BATCH_SIZE': 128,
           'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
           'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
           'BBOX_NORMALIZE_TARGETS': True,
           'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': False,
           'BBOX_REG': False,
           'BBOX_THRESH': 0.5,
           'BG_THRESH_HI': 0.5,
           'BG_THRESH_LO': 0.0,
           'FG_FRACTION': 0.25,
           'FG_THRESH': 0.5,
           'HAS_RPN': True,
           'IMS_PER_BATCH': 1,
           'MAX_SIZE': 1000,
           'PROPOSAL_METHOD': 'gt',
           'RPN_BATCHSIZE': 256,
           'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'RPN_CLOBBER_POSITIVES': False,
           'RPN_FG_FRACTION': 0.5,
           'RPN_MIN_SIZE': 16,
           'RPN_NEGATIVE_OVERLAP': 0.3,
           'RPN_NMS_THRESH': 0.7,
           'RPN_POSITIVE_OVERLAP': 0.7,
           'RPN_POSITIVE_WEIGHT': -1.0,
           'RPN_POST_NMS_TOP_N': 2000,
           'RPN_PRE_NMS_TOP_N': 12000,
           'SCALES': [600],
           'SNAPSHOT_INFIX': 'stage1',
           'SNAPSHOT_ITERS': 10000,
           'USE_FLIPPED': True,
           'USE_PREFETCH': False},
 'USE_GPU_NMS': True}
繼續,現在我們進入函數 roidb, imdb = get_roidb(imdb_name):
def get_roidb(imdb_name, rpn_file=None):
    imdb = get_imdb(imdb_name)  
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)  ##加載數據完畢
    imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)    ##設置區域建議所使用的方法gt,具體使用eval融合字符串再賦值
    print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)
    if rpn_file is not None:
        imdb.config['rpn_file'] = rpn_file
    roidb = get_training_roidb(imdb)
    return roidb, imdb

進入imdb = get_imdb(imdb_name)函數,該文件在/py-faster-rcnn/lib/datasets/factory.py,其實主要是運用工廠模式來適配不同的數據集:

 

for year in ['2007', '2012']:
for split in ['train', 'val', 'trainval', 'test']:
name = 'voc_{}_{}'.format(year, split)
__sets[name] = (lambda split=split, year=year: pascal_voc(split, year))


def
get_imdb(name): """Get an imdb (image database) by name.""" if not __sets.has_key(name): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() ##執行該函數,該函數對應上面的lambda,適配pascal_voc來建造數據

 

這里其實也是調用了pascal_voc()函數來創建imdb數據,pascal_voc類見py-faster-rcnn/lib/datasets/pascal_voc.py文件中,如下:

class pascal_voc(imdb):
    def __init__(self, image_set, year, devkit_path=None):
        imdb.__init__(self, 'voc_' + year + '_' + image_set)  ##進入基類imdb來進行初始化
        self._year = year
        self._image_set = image_set
        self._devkit_path = self._get_default_path() if devkit_path is None \
                            else devkit_path
        self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
        self._classes = ('__background__', # always index 0     該數據集加上背景一共有21類
                         'aeroplane', 'bicycle', 'bird', 'boat',
                         'bottle', 'bus', 'car', 'cat', 'chair',
                         'cow', 'diningtable', 'dog', 'horse',
                         'motorbike', 'person', 'pottedplant',
                         'sheep', 'sofa', 'train', 'tvmonitor')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))  ##將各個類隨機轉化成對應的數字,比如sheep=17
        self._image_ext = '.jpg'
        self._image_index = self._load_image_set_index()  ##讀取py-faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main/trainval.txt
##為每個圖片標注index,不如000005.jpg=0000
# Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : False, 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)

這里只截取了一部分,可以發現,pascal_voc這個類主要用來組織輸入的圖片數據,存儲圖片的相關信息,但並不存儲圖片;而實際上,pascal_voc類是imdb類的一個子類;進入imdb的類:

class imdb(object):
    """Image database."""

    def __init__(self, name):
        self._name = name
        self._num_classes = 0
        self._classes = []
        self._image_index = []
        self._obj_proposer = 'selective_search' ##先前的fast rcnn默認使用ss方法進行區域建議
        self._roidb = None
        self._roidb_handler = self.default_roidb
        # Use this dict for storing dataset specific config options
        self.config = {}

    @property   
    def name(self):  ##基類屬性在子類(pascal類)創建時若有賦值操作則自動生成
        return self._name

    @property
    def num_classes(self):
        return len(self._classes)

    @property
    def classes(self):
        return self._classes

    @property
    def image_index(self):
        return self._image_index

    @property  ##把方法裝飾成該類的屬性
    def roidb_handler(self):
        return self._roidb_handler

    @roidb_handler.setter  ##對roidb_handler產生另外一個裝飾器,使用setter屬性進行賦值
    def roidb_handler(self, val):
        self._roidb_handler = val

    def set_proposal_method(self, method):  ##運用setter來設置訓練方法
        method = eval('self.' + method + '_roidb')
        self.roidb_handler = method

    @property
    def roidb(self):
        # A roidb is a list of dictionaries, each with the following keys:
        #   boxes
        #   gt_overlaps
        #   gt_classes
        #   flipped
        if self._roidb is not None:
            return self._roidb
        self._roidb = self.roidb_handler()
        return self._roidb

    @property
    def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path

    @property
    def num_images(self):
      return len(self.image_index)

 此時我們看看現在的變量值:

 

好了現在imdb數據已經獲得了,再回到get_roidb()里面的imdb = get_imdb(imdb_name)函數中,緊接着set_proposal_method()函數設置了產生proposal的方法,實際也是向imdb中添加roidb數據:

    def set_proposal_method(self, method):
        method = eval('self.' + method + '_roidb')
        self.roidb_handler = method  ##method=self.gt_roidb,這里其實是調用了pascal_voc.py文件里面的gt_roidb()函數

首先用eval()對這個方法進行解析,使其有效,再傳入roidb_handler中,這里就要回到之前的train_rpn()函數中了,它里面設置了cfg.TRAIN.PROPOSAL_METHOD='gt'(默認值是selective search,先前用於fast rcnn的),先進入gt_roidb()函數中:

    def gt_roidb(self):
        """
        Return the database of ground-truth regions of interest.

        This function loads/saves from/to a cache file to speed up future calls.
        """
        cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')  ##如果存在gt框的位置文件則加載並返回gt框的信息(roidb)
        if os.path.exists(cache_file):
            with open(cache_file, 'rb') as fid:
                roidb = cPickle.load(fid)
            print '{} gt roidb loaded from {}'.format(self.name, cache_file)
            return roidb

        gt_roidb = [self._load_pascal_annotation(index)  ##如果不存在則直接讀取文件的
                    for index in self.image_index]
        with open(cache_file, 'wb') as fid:
            cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
        print 'wrote gt roidb to {}'.format(cache_file)

        return gt_roidb

這里的gt_roidb = [self._load_pascal_annotation(index)函數為:

    def _load_pascal_annotation(self, index):
        """
        Load image and bounding boxes info from XML file in the PASCAL VOC
        format.
        """
        filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
        tree = ET.parse(filename)  ##從硬盤導入xml文件
        objs = tree.findall('object')  ##找到object的tag
        if not self.config['use_diff']:  ##取出tag為difficult的object
            # Exclude the samples labeled as difficult
            non_diff_objs = [
                obj for obj in objs if int(obj.find('difficult').text) == 0]
            # if len(non_diff_objs) != len(objs):
            #     print 'Removed {} difficult objects'.format(
            #         len(objs) - len(non_diff_objs))
            objs = non_diff_objs
        num_objs = len(objs)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)  ##boxes的存儲坐標,4個,所以為四列
        gt_classes = np.zeros((num_objs), dtype=np.int32)  ##gt框的類
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)  ##重疊率矩陣
        # "Seg" area for pascal is just the box area
        seg_areas = np.zeros((num_objs), dtype=np.float32)  ##面積

        # Load object bounding boxes into a data frame.
        for ix, obj in enumerate(objs):
            bbox = obj.find('bndbox')
            # Make pixel indexes 0-based
            x1 = float(bbox.find('xmin').text) - 1
            y1 = float(bbox.find('ymin').text) - 1
            x2 = float(bbox.find('xmax').text) - 1
            y2 = float(bbox.find('ymax').text) - 1
            cls = self._class_to_ind[obj.find('name').text.lower().strip()]
            boxes[ix, :] = [x1, y1, x2, y2]
            gt_classes[ix] = cls
            overlaps[ix, cls] = 1.0
            seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)

        overlaps = scipy.sparse.csr_matrix(overlaps)

        return {'boxes' : boxes,
                'gt_classes': gt_classes,
                'gt_overlaps' : overlaps,
                'flipped' : False,
                'seg_areas' : seg_areas}

由上面可以看出roidb的結構是一個包含有5個key的字典。

這個時候就從imdb獲得了最初的roidb格式的數據,但這還不是訓練時的roidb數據,再回到get_roidb()函數中,通過get_training_roidb(imdb)函數得到最終用於訓練的roidb數據,進入該函數:

def get_training_roidb(imdb):
    """Returns a roidb (Region of Interest database) for use in training."""
    if cfg.TRAIN.USE_FLIPPED: 
        print 'Appending horizontally-flipped training examples...'
        imdb.append_flipped_images()  ##如果設置了翻轉項,則對圖片進行水平翻轉后添加,原來5000張圖片,加入翻轉后為10000左右,這里可以理解成數據增強
        print 'done' 

    print 'Preparing training data...'
    rdl_roidb.prepare_roidb(imdb) ##對roidb加入額外的信息,方便訓練
    print 'done'

    return imdb.roidb

進入翻轉函數append_flipped_images()

    def append_flipped_images(self):
        num_images = self.num_images
        widths = self._get_widths() ##具體里面是使用PIL庫來獲取width
        for i in xrange(num_images):
            boxes = self.roidb[i]['boxes'].copy()
            oldx1 = boxes[:, 0].copy()
            oldx2 = boxes[:, 2].copy()
            boxes[:, 0] = widths[i] - oldx2 - 1
            boxes[:, 2] = widths[i] - oldx1 - 1
            assert (boxes[:, 2] >= boxes[:, 0]).all()
            entry = {'boxes' : boxes,
                     'gt_overlaps' : self.roidb[i]['gt_overlaps'],
                     'gt_classes' : self.roidb[i]['gt_classes'],
                     'flipped' : True}
            self.roidb.append(entry)
        self._image_index = self._image_index * 2

進入rdl_roidb.prepare_roidb(imdb)函數:

def prepare_roidb(imdb):
    """Enrich the imdb's roidb by adding some derived quantities that
    are useful for training. This function precomputes the maximum
    overlap, taken over ground-truth boxes, between each ROI and
    each ground-truth box. The class with maximum overlap is also
    recorded.
    """
    sizes = [PIL.Image.open(imdb.image_path_at(i)).size
             for i in xrange(imdb.num_images)]
    roidb = imdb.roidb
    for i in xrange(len(imdb.image_index)):  ##加入位置,寬,高等信息
        roidb[i]['image'] = imdb.image_path_at(i)
        roidb[i]['width'] = sizes[i][0]
        roidb[i]['height'] = sizes[i][1]
        # need gt_overlaps as a dense array for argmax
        gt_overlaps = roidb[i]['gt_overlaps'].toarray()
        # max overlap with gt over classes (columns)
        max_overlaps = gt_overlaps.max(axis=1)   
        # gt class that had the max overlap
        max_classes = gt_overlaps.argmax(axis=1)  
        roidb[i]['max_classes'] = max_classes  ##加入最大概率類
        roidb[i]['max_overlaps'] = max_overlaps  ##加入最大重疊率
        # sanity checks
        # max overlap of 0 => class should be zero (background)
        zero_inds = np.where(max_overlaps == 0)[0]
        assert all(max_classes[zero_inds] == 0)
        # max overlap > 0 => class should not be zero (must be a fg class)
        nonzero_inds = np.where(max_overlaps > 0)[0]
        assert all(max_classes[nonzero_inds] != 0)

查看此時roidb的結構:

此時roidb的圖片000005.jpg的,也即index為00000的圖片的數據結構下有:boxes、flipped(是否翻轉過)、gt_classes、gt_overlaps、height、image、max_classes、max_overlaps、seg_areas(boxes的面積)、width、__len__

到這里為止,我們已經成功利用工廠模式適配pascal_voc的數據集,並讀取xml文件來獲取數據集的gt框(roisdb),第一部分介紹完畢。

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM