我發現一個問題,當你使用Tensorboard進行可視化操作時: 如果你定義了
MERGED = tf.summary.merge_all();
這個操作,之后如果你單獨使用SESS.run([MERGED]),那么就會報上面的這個錯誤;
此時你應該改成和其他的豬op一起進行SESS.run([TRAIN,MERGED]), 改了之后就不會再報這個錯誤,
具體原因我也很難解釋清楚。之前針對這個錯誤,查了挺長時間,有一些解決方法,但都沒有解決我的問題:
https://stackoverflow.com/questions/35114376/error-when-computing-summaries-in-tensorflow
https://blog.csdn.net/lyrassongs/article/details/75012464
后來我是參考了一份Github上一份程序,按它的樣子改才改過來了。
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 31 17:07:38 2018
@author: LiZebin
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
tf.reset_default_graph()
SESS = tf.Session()
LOGDIR = "logs/"
X = np.arange(0, 1000, 2, dtype=np.float32)
Y = X*2.3+5.6
X_ = tf.placeholder(tf.float32, name="X")
Y_ = tf.placeholder(tf.float32, name="Y")
W = tf.get_variable(name="Weights", shape=[1],
dtype=tf.float32, initializer=tf.random_normal_initializer())
B = tf.get_variable(name="bias", shape=[1],
dtype=tf.float32, initializer=tf.random_normal_initializer())
PRED = W*X_+B
LOSS = tf.reduce_mean(tf.square(Y_-PRED))
tf.summary.scalar("Loss", LOSS)
TRAIN = tf.train.GradientDescentOptimizer(learning_rate=0.0000001).minimize(LOSS)
WRITER = tf.summary.FileWriter(LOGDIR, SESS.graph)
MERGED = tf.summary.merge_all()
SESS.run(tf.global_variables_initializer())
for step in range(20000):
c1, c2, loss, RS, _ = SESS.run([W, B, LOSS, MERGED, TRAIN], feed_dict={X_:X, Y_:Y}) ####如果單獨在后面寫RS=SESS.run(MERGED)就會報之前那個錯誤
WRITER.add_summary(RS)
if step%500 == 0:
temp = "c1=%s, c2=%s, loss=%s"%(c1, c2, loss)
print(temp)
SESS.close()
