Python神經網絡編程 第二章 使用Python進行DIY


使用神經網絡識別手寫數字:

import numpy
# scipy.special for the sigmoid function expit(),即S函數
import scipy.special
# library for plotting arrays
import matplotlib.pyplot
# ensure the plots are inside this notebook, not an external window
%matplotlib inline // 在notebook上繪圖,而不是獨立窗口

# neural network class definition
class neuralNetwork:
    
    
    # initialise the neural network
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        # set number of nodes in each input, hidden, output layer
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        
        # link weight matrices, wih and who
        # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
        # w11 w21
        # w12 w22 etc 
	# numpy.random.normal(loc,scale,size) loc:概率分布的均值;scale:概率分布的方差;size:輸出的shape
        self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
        self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))

        # learning rate
        self.lr = learningrate
        
        # activation function is the sigmoid function
	# 使用lambda創建的函數是沒有名字的
        self.activation_function = lambda x: scipy.special.expit(x)
        
        pass

    
    # train the neural network
    def train(self, inputs_list, targets_list):
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        # output layer error is the (target - actual)
        output_errors = targets - final_outputs
        # hidden layer error is the output_errors, split by weights, recombined at hidden nodes
        hidden_errors = numpy.dot(self.who.T, output_errors) 
        
        # update the weights for the links between the hidden and output layers
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
        
        # update the weights for the links between the input and hidden layers
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
        
        pass

    
    # query the neural network
    def query(self, inputs_list):
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs

# number of input, hidden and output nodes
# 選擇784個輸入節點是28*28的結果,即組成手寫數字圖像的像素個數
input_nodes = 784
# 選擇使用100個隱藏層不是通過使用科學的方法得到的。通過選擇使用比輸入節點的數量小的值,強制網絡嘗試總結輸入的主要特點。
# 但是,如果選擇太少的隱藏層節點,會限制網絡的能力,使網絡難以找到足夠的特征或模式。
# 同時,還要考慮到輸出層節點數10。
# 這里應該強調一點。對於一個問題,應該選擇多少個隱藏層節點,並不存在一個最佳方法。同時,我們也沒有最佳方法選擇需要幾層隱藏層。
# 就目前而言,最好的辦法是進行實驗,直到找到適合你要解決的問題的一個數字。
hidden_nodes = 200
output_nodes = 10

# learning rate,需要多次嘗試,0.2是最佳值
learning_rate = 0.1

# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)

# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

# train the neural network

# epochs is the number of times the training data set is used for training
# 就像調整學習率一樣,需要使用幾個不同的世代進行實驗並繪圖,以可視化這些效果。直覺告訴我們,所做的訓練越多,所得到的的性能越好。
# 但太多的訓練實際上會過猶不及,這是由於網絡過度擬合訓練數據。
# 在大約5或7個世代時,有一個甜蜜點。在此之后,性能會下降,這可能是過度擬合的效果。
# 性能在6個世代的情況下下降,這可能是運行中出了問題,導致網絡在梯度下降過程中被卡在了一個局部的最小值中。
# 事實上,由於沒有對每個數據點進行多次實驗,無法減小隨機過程的影響。
# 神經網絡的學習過程其核心是隨機過程,有時候工作得不錯,有時候很糟。
# 另一個可能的原因是,在較大數目的世代情況下,學習率可能設置過高了。在更多世代的情況下,減小學習率確實能夠得到更好的性能。
# 如果打算使用更長的時間(多個世代)探索梯度下降,那么可以采用較短的步長(學習率),總體上可以找到更好的路徑。
# 要正確、科學地選擇這些參數,必須為每個學習率和世代組合進行多次實驗,盡量減少在梯度下降過程中隨機性的影響。
# 還可嘗試不同的隱藏層節點數量,不同的激活函數。
epochs = 5

for e in range(epochs):
    # go through all records in the training data set
    for record in training_data_list:
        # split the record by the ',' commas
        all_values = record.split(',')
        # scale and shift the inputs
	# 輸入值需要避免0,輸出值需要避免1
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desired label which is 0.99)
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        targets[int(all_values[0])] = 0.99
        n.train(inputs, targets)
        pass
    pass

# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

# test the neural network

# scorecard for how well the network performs, initially empty
scorecard = []

# go through all the records in the test data set
for record in test_data_list:
    # split the record by the ',' commas
    all_values = record.split(',')
    # correct answer is first value
    correct_label = int(all_values[0])
    # scale and shift the inputs
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    label = numpy.argmax(outputs)
    # append correct or incorrect to list
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        scorecard.append(1)
    else:
        # network's answer doesn't match correct answer, add 0 to scorecard
        scorecard.append(0)
        pass
    
    pass

# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9712

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM