github代碼地址:https://github.com/showkawa/springBoot_2017/tree/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread
1 同步容器類
1.1 Vector與ArrayList區別
1.ArrayList是最常用的List實現類,內部是通過數組實現的,它允許對元素進行快速隨機訪問。數組的缺點是每個元素之間不能有間隔,當數組大小不滿足時需要增加存儲能力,
就要講已經有數組的數據復制到新的存儲空間中。當從ArrayList的中間位置插入或者刪除元素時,需要對數組進行復制、移動、代價比較高。
因此,它適合隨機查找和遍歷,不適合插入和刪除。 2.Vector與ArrayList一樣,也是通過數組實現的,不同的是它支持線程的同步,即某一時刻只有一個線程能夠寫Vector,避免多線程同時寫而引起的不一致性,
但實現同步需要很高的花費,因此,訪問它比訪問ArrayList慢
注意: Vector線程安全、ArrayList非線程安全
Vector源碼類
Add方法源碼類


Arraylist源碼
Add方法源碼

1.2 HasTable與HasMap
1.HashMap不是線程安全的 HastMap是一個接口 是map接口的子接口,是將鍵映射到值的對象,其中鍵和值都是對象,並且不能包含重復鍵,但可以包含重復值。HashMap允許null key和null value,
而hashtable不允許。 2.HashTable是線程安全的一個Collection。 3.HashMap是Hashtable的輕量級實現(非線程安全的實現),他們都完成了Map接口,主要區別在於HashMap允許空(null)鍵值(key),由於非線程安全,
效率上可能高於Hashtable。 HashMap允許將null作為一個entry的key或者value,而Hashtable不允許。 HashMap把Hashtable的contains方法去掉了,改成containsvalue和containsKey。
注意: HashTable線程安全,HashMap線程不安全。
1.3 synchronizedMap
Collections.synchronizedMap(m) 將線程不安全額集合變為線程安全集合
1.4 ConcurrentHashMap
ConcurrentMap接口下有倆個重要的實現 :
ConcurrentHashMap
ConcurrentskipListMap (支持並發排序功能。彌補ConcurrentHas hMa p)
ConcurrentHashMap內部使用段(Segment)來表示這些不同的部分,每個段其實就是一個
小的HashTable,它們有自己的鎖。只要多個修改操作發生在不同的段上,它們就可以並
發進行。把一個整體分成了16個段(Segment.也就是最高支持16個線程的並發修改操作。
這也是在重線程場景時減小鎖的粒度從而降低鎖競爭的一種方案。並且代碼中大多共享變
量使用volatile關鍵字聲明,目的是第一時間獲取修改的內容,性能非常好。
1.5 CountDownLatch
CountDownLatch類位於java.util.concurrent包下,利用它可以實現類似計數器的功能。比如有一個任務A,它要等待其他4個任務執行完畢之后才能執行,
此時就可以利用CountDownLatch來實現這種功能了。
1.6 CyclicBarrier
CyclicBarrier初始化時規定一個數目,然后計算調用了CyclicBarrier.await()進入等待的線程數。
當線程數達到了這個數目時,所有進入等待狀態的線程被喚醒並繼續。
CyclicBarrier就象它名字的意思一樣,可看成是個障礙, 所有的線程必須到齊后才能一起通過這個障礙。
CyclicBarrier初始時還可帶一個Runnable的參數, 此Runnable任務在CyclicBarrier的數目達到后,所有其它線程被喚醒前被執行。
代碼見:https://github.com/showkawa/springBoot_2017/blob/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread/CyclicBarrierThread.java
1.7 Semaphore
Semaphore是一種基於計數的信號量。它可以設定一個閾值,基於此,多個線程競爭獲取許可信號,做自己的申請后歸還,超過閾值后,線程申請許可信號將會被阻塞。
Semaphore可以用來構建一些對象池,資源池之類的,比如數據庫連接池,我們也可以創建計數為1的Semaphore,將其作為一種類似互斥鎖的機制,這也叫二元信號量,
表示兩種互斥狀態。它的用法如下:Semaphore availablePermits函數用來獲取當前可用的資源數量 wc.acquire(); //申請資源 wc.release();// 釋放資源
2. 並發隊列
在並發隊列上JDK提供了兩套實現,一個是以ConcurrentLinkedQueue為代表的高性能隊列,一個是以BlockingQueue接口為代表的阻塞隊列,無論哪種都繼承自Queue。
2.1 ConcurrentLinkedQeque
ConcurrentLinkedQueue : 是一個適用於高並發場景下的隊列,通過無鎖的方式,實現
了高並發狀態下的高性能,通常ConcurrentLinkedQueue性能好於BlockingQueue.它
是一個基於鏈接節點的無界線程安全隊列。該隊列的元素遵循先進先出的原則。頭是最先
加入的,尾是最近加入的,該隊列不允許null元素。
ConcurrentLinkedQueue重要方法:
add 和offer() 都是加入元素的方法(在ConcurrentLinkedQueue中這倆個方法沒有任何區別)
poll() 和peek() 都是取頭元素節點,區別在於前者會刪除元素,后者不會。
2.2 BlockingQueue
阻塞隊列(BlockingQueue)是一個支持兩個附加操作的隊列。 阻塞隊列常用於生產者和消費者的場景,生產者是往隊列里添加元素的線程,消費者是從隊列里拿元素的線程。阻塞隊列就是生產者存放元素的容器,而消費者也只從容器里拿元素。 BlockingQueue即阻塞隊列,從阻塞這個詞可以看出,在某些情況下對阻塞隊列的訪問可能會造成阻塞。被阻塞的情況主要有如下兩種: 1. 當隊列滿了的時候進行入隊列操作 2. 當隊列空了的時候進行出隊列操作 因此,當一個線程試圖對一個已經滿了的隊列進行入隊列操作時,它將會被阻塞,除非有另一個線程做了出隊列操作;同樣,當一個線程試圖對一個空隊列進行出隊列操作時,
它將會被阻塞,除非有另一個線程進行了入隊列操作。 在Java中,BlockingQueue的接口位於java.util.concurrent 包中(在Java5版本開始提供),由上面介紹的阻塞隊列的特性可知,阻塞隊列是線程安全的。 在新增的Concurrent包中,BlockingQueue很好的解決了多線程中,如何高效安全“傳輸”數據的問題。通過這些高效並且線程安全的隊列類,
為我們快速搭建高質量的多線程程序帶來極大的便利。本文詳細介紹了BlockingQueue家庭中的所有成員,包括他們各自的功能以及常見使用場景。 認識BlockingQueue 阻塞隊列,顧名思義,首先它是一個隊列,通過一個共享的隊列,可以使得數據由隊列的一端輸入,從另外一端輸出; 常用的隊列主要有以下兩種:(當然通過不同的實現方式,還可以延伸出很多不同類型的隊列,DelayQueue就是其中的一種) 先進先出(FIFO):先插入的隊列的元素也最先出隊列,類似於排隊的功能。從某種程度上來說這種隊列也體現了一種公平性。 后進先出(LIFO):后插入隊列的元素最先出隊列,這種隊列優先處理最近發生的事件。 多線程環境中,通過隊列可以很容易實現數據共享,比如經典的“生產者”和“消費者”模型中,通過隊列可以很便利地實現兩者之間的數據共享。
假設我們有若干生產者線程,另外又有若干個消費者線程。如果生產者線程需要把准備好的數據共享給消費者線程,利用隊列的方式來傳遞數據,
就可以很方便地解決他們之間的數據共享問題。但如果生產者和消費者在某個時間段內,萬一發生數據處理速度不匹配的情況呢?理想情況下,
如果生產者產出數據的速度大於消費者消費的速度,並且當生產出來的數據累積到一定程度的時候,那么生產者必須暫停等待一下(阻塞生產者線程),
以便等待消費者線程把累積的數據處理完畢,反之亦然。然而,在concurrent包發布以前,在多線程環境下,我們每個程序員都必須去自己控制這些細節,
尤其還要兼顧效率和線程安全,而這會給我們的程序帶來不小的復雜度。好在此時,強大的concurrent包橫空出世了,而他也給我們帶來了強大的BlockingQueue。(
在多線程領域:所謂阻塞,在某些情況下會掛起線程(即阻塞),一旦條件滿足,被掛起的線程又會自動被喚醒)
2.2.1 ArrayBlockingQueue
ArrayBlockingQueue是一個有邊界的阻塞隊列,它的內部實現是一個數組。有邊界的意思是它的容量是有限的,我們必須在其初始化的時候指定它的容量大小,
容量大小一旦指定就不可改變。
ArrayBlockingQueue是以先進先出的方式存儲數據,最新插入的對象是尾部,最新移出的對象是頭部。
2.2.2 LinkedBlockingQueue
LinkedBlockingQueue阻塞隊列大小的配置是可選的,如果我們初始化時指定一個大小,它就是有邊界的,如果不指定,它就是無邊界的。說是無邊界,
其實是采用了默認大小為Integer.MAX_VALUE的容量 。它的內部實現是一個鏈表。2.1.2 LinkedBlockingQueue 和ArrayBlockingQueue一樣,LinkedBlockingQueue 也是以先進先出的方式存儲數據,最新插入的對象是尾部,最新移出的對象是頭部。
2.2.3 PriorityBlockingQueue
PriorityBlockingQueue是一個沒有邊界的隊列,它的排序規則和 java.util.PriorityQueue一樣。需要注意,PriorityBlockingQueue中允許插入null對象。
所有插入PriorityBlockingQueue的對象必須實現 java.lang.Comparable接口,隊列優先級的排序規則就是按照我們對這個接口的實現來定義的。
另外,我們可以從PriorityBlockingQueue獲得一個迭代器Iterator,但這個迭代器並不保證按照優先級順序進行迭代。
2.2.4 SynchronousQueue
SynchronousQueue隊列內部僅允許容納一個元素。當一個線程插入一個元素后會被阻塞,除非這個元素被另一個線程消費。
使用BlockingQueue模擬生產者與消費者
