分布式日志收集框架Flume
1.業務現狀分析
-
WebServer/ApplicationServer分散在各個機器上
-
想在大數據平台Hadoop進行統計分析
-
日志如何收集到Hadoop平台上
-
解決方案及存在的問題
-
如何解決我們的數據從其他的server上移動到Hadoop之上?
- shell: cp --> Hadoop集群的機器上,hdfs dfs -put ....(有很多問題不好解決,容錯、負載均衡、時效性、壓縮)
- Flume,從 A --> B 移動日志
2.Flume概述
- Flume官網:http://flume.apache.org/
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data.
Flume是由Apache基金會提供的一個分布式、高可靠、高可用的服務,用於分布式的海量日志的高效收集、聚合、移動系統。
-
Flume設計目標
- 可靠性:高科要
- 擴展性:模塊可擴展
- 管理性:agent管理
-
界同類產品對比
- Flume: Cloudera/Apache, Java語言開發。
- Logstash: ELK(ElasticsSearch, Logstash, Kibana)
- Scribe: Facebook, 使用C/C++開發, 負載均衡不是很好, 已經不維護了。
- Chukwa: Yahoo/Apache, 使用Java語言開發, 負載均衡不是很好, 已經不維護了。
- Fluentd: 和Flume類似, Ruby開發。
-
Flume發展史
- Cloudera公司提出0.9.2,叫Flume-OG
- 2011年Flume-728編號,重要里程碑(Flume-NG),貢獻給Apache社區
- 2012年7月 1.0版本
- 2015年5月 1.6版本
- ~ 1.7版本
3.Flume架構及核心組件
Flume有三大組件
- Source: 收集,指定數據源從哪里來(Avro, Thrift, Spooling, Kafka, Exec)
- Channel: 聚集,把數據先存在(Memory, File, Kafka等用的比較多)
- Sink: 把數據寫到某個地方去(HDFS, Hive, Logger, Avro, Thrift, File, ES, HBase, Kafka等)
4.Flume環境部署
- 前置條件
- Java Runtime Environment - Java 1.8 or later(安裝Java)
- Memory - Sufficient memory for configurations used by sources, channels or sinks(足夠內存)
- Disk Space - Sufficient disk space for configurations used by channels or sinks(足夠空間)
- Directory Permissions - Read/Write permissions for directories used by agent(讀寫權限)
- 1.安裝JDK(下載,解壓,安裝,配置環境變量)
- 2.安裝Flume(下載,加壓,安裝,配置環境變量,檢測:flume-ng version)
5.Flume實戰
-
需求1:從指定網絡端口采集數據輸出到控制台
- flume-conf.properties
- A) 配置Source
- B) 配置Channel
- C) 配置Sink
- D) 把以上三個組件串起來
# example.conf: A single-node Flume configuration # a1: agent名稱 # r1:source的名稱 # k1:sink的名稱 # c1:channel的名稱 # Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
- 啟動Agent
flume-ng agent \ --name $agent_name \ --conf conf \ --conf-file conf/flume-conf.properties \ -Dflume.root.logger=INFO,console flume-ng agent \ --name a1 \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/example.conf \ -Dflume.root.logger=INFO,console
- flume-conf.properties
-
需求2:監控一個文件實時采集新增的數據輸出到控制台
- 1.Agent選型:exec source + memory channel + logger sink
- 2.配置文件
# exec-memory-logger.conf: A single-node Flume configuration # a1: agent名稱 # r1:source的名稱 # k1:sink的名稱 # c1:channel的名稱 # Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/k.o/data/data.log a1.sources.r1.shell = /bin/sh -c # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
- 啟動Agent
flume-ng agent \ --name $agent_name \ --conf conf \ --conf-file conf/flume-conf.properties \ -Dflume.root.logger=INFO,console flume-ng agent \ --name a1 \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/exec-memory-logger.conf \ -Dflume.root.logger=INFO,console
-
需求3:將A服務器上的日志實時采集到B服務器
- 技術選型:
1.exec source + memory channel + avro sink
2.arro source + memory channel + logger sink
# exec-memory-avro.conf: A single-node Flume configuration
# exec-memory-avro: agent名稱
# exec-source:source的名稱
# avro-sink:sink的名稱
# memory-channel:channel的名稱
# Name the components on this agent
exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel
# Describe/configure the source
exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /home/k.o/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c
# Describe the sink
exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = localhost
exec-memory-avro.sinks.avro-sink.port = 44444
# Use a channel which buffers events in memory
exec-memory-avro.channels.memory-channel.type = memory
exec-memory-avro.channels.memory-channel.capacity = 1000
exec-memory-avro.channels.memory-channel.transactionCapacity = 100
# Bind the source and sink to the channel
exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel
# avro-memory-logger.conf: A single-node Flume configuration
# avro-memory-logger: agent名稱
# exec-source:source的名稱
# logger-sink:sink的名稱
# memory-channel:channel的名稱
# Name the components on this agent
avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel
# Describe/configure the source
avro-memory-logger.sources.avro-source.type = avro
avro-memory-logger.sources.avro-source.bind = localhost
avro-memory-logger.sources.avro-source.port = 44444
# Describe the sink
avro-memory-logger.sinks.logger-sink.type = logger
# Use a channel which buffers events in memory
avro-memory-logger.channels.memory-channel.type = memory
avro-memory-logger.channels.memory-channel.capacity = 1000
avro-memory-logger.channels.memory-channel.transactionCapacity = 100
# Bind the source and sink to the channel
avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel
- 啟動Agent
# 先啟動 avro-memory-logger
flume-ng agent \
--name avro-memory-logger \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console
# 再啟動 exec-memory-avro
flume-ng agent \
--name exec-memory-avro \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console
- 日志收集過程
- 機器A上監控一個文件,當我們訪問主站時會有用戶行為日志記錄到access.log鍾
- avro sink把新產生的日志輸出到對應的avro source指定的hostname和port上
- 通過avro source對應的logger將我們收集的日志輸出到控制台