前言
本系列教程為pytorch官網文檔翻譯。本文對應官網地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
系列教程總目錄傳送門:我是一個傳送門
本系列教程對應的 jupyter notebook 可以在我的Github倉庫下載:
1. 數據准備
數據下載通道: 點擊這里下載數據集。解壓到當前工作目錄。
在 data/names
文件夾下面包含18個名字形如 [language].txt
的文件。每個文件包含多條姓名,一個姓名一行。我們在之后需要將其編碼格式(Unicode)轉化為ASCII。
通過下面的步驟,我們可以得到一個數據字典,形如{language:[name1,name2,...]}
,字典的鍵為語言,值為一個列表,包含對應文件夾下面的所有姓名。用變量 category
和 line
分別標識鍵值對
from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os
def findFiles(path): return glob.glob(path)
print(findFiles('data/names/*.txt'))
import unicodedata
import string
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)
# Turn a Unicode string to plain ASCII
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c)!= 'Mn'
and c in all_letters
)
print(unicodeToAscii('Ślusàrski'))
# Build the category_lines dictinary, a list of names per language
category_lines={}
all_categories = []
# Read a file and split into lines
def readLines(filename):
lines = open(filename, encoding='utf-8').read().strip().split('\n')
return [unicodeToAscii(line) for line in lines]
for filename in findFiles('data/names/*.txt'):
category = os.path.splitext(os.path.basename(filename))[0]
all_categories.append(category)
lines = readLines(filename)
category_lines[category] = lines
n_categories = len(all_categories)
out:
['data/names\\Arabic.txt', 'data/names\\Chinese.txt', 'data/names\\Czech.txt', 'data/names\\Dutch.txt', 'data/names\\English.txt', 'data/names\\French.txt', 'data/names\\German.txt', 'data/names\\Greek.txt', 'data/names\\Irish.txt', 'data/names\\Italian.txt', 'data/names\\Japanese.txt', 'data/names\\Korean.txt', 'data/names\\Polish.txt', 'data/names\\Portuguese.txt', 'data/names\\Russian.txt', 'data/names\\Scottish.txt', 'data/names\\Spanish.txt', 'data/names\\Vietnamese.txt'] Slusarski
現在我們有了category_lines
, 這是一個字典映射了每個語言和對應的名字。我們同樣記錄了 all_categories
(一個包含所有語言的列表)和 n_categories
方便后續的引用
print(category_lines['Italian'][:5])
out: ['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']
2. 將姓名轉化為張量
現在我們將所有的姓名組織好了,我們需要將他們轉化為張量(Tensor)方便使用。
為了表示單個字母,我們使用 one-hot 表示方法(size:<1 x n_letters>
) 。一個 one-hot 向量是全0(激活字母為1)的向量。 例如:
"b"=<0,1,0,0,0,...,0>
。
於是每個姓名可以用形狀為 <line_length x 1 x n_letters>
的 2D 矩陣表示。
額外的一個維度是為了構建一個假的 batch(pytorch只接受mini_batch數據)
import torch
# Fine letter index from all_letters, e.g. "a"=0
def letterToIndex(letter):
return all_letters.find(letter)
# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def letterToTensor(letter):
tensor = torch.zeros(1, n_letters)
tensor[0][letterToIndex(letter)]=1
return tensor
# Turn a line into a <line_length x 1 x n_letters>,
# or an array of one_hot letter vectors
def lineToTensor(line):
tensor = torch.zeros(len(line), 1, n_letters)
for li, letter in enumerate(line):
tensor[li][0][letterToIndex(letter)]=1
return tensor
print(letterToTensor('J'))
print(lineToTensor('Jones').size())
out:
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0.]])
torch.Size([5, 1, 57])
3. 構建網絡
在 autograd
出現前, 在Torch中創建一個循環神經網絡需要在每一個時間步克隆層參數。網絡層持有一個隱藏狀態和梯度信息,而目前這些完全交由計算圖本身來處理。這意味着你能自己用一個很純凈的方式來實現一個 RNN——僅僅使用一些常規的前饋層。
這個RNN模塊只有兩個線性層,以輸入和隱藏狀態為輸入,LogsSoftmax 層為輸出。
如下圖所示:
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat([input, hidden], 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
為了運行這個網絡,我們需要傳遞輸入和前一層傳遞下來的隱藏狀態(初始化為0)。我們使用最后一層的輸出作為預測的結果
input = letterToTensor('A')
hidden = torch.zeros(1, n_hidden)
output, next_hidden = rnn(input, hidden)
out:
tensor([[-2.8338, -2.9645, -2.9535, -2.9355, -2.9281, -2.8521, -2.8352,
-2.9544, -2.8516, -2.8932, -2.7696, -2.8142, -2.8888, -2.7888,
-2.8991, -2.9971, -2.9783, -2.9278]])
正如你所看到的,輸出是<1 x n_categories>
的Tensor,其中每個項目都是該類別的可能性(越大代表可能性越高)。
4. 訓練
4.1 訓練准備
在進入訓練之前,我們應該做一些輔助函數。第一個是解釋網絡的輸出,我們知道這是每個類別的可能性。這里使用Tensor.topk來獲得最大值的索引
def categoryFromOutput(output):
top_n, top_i = output.topk(1)
category_i = top_i[0].item()
return all_categories[category_i], category_i
print(categoryFromOutput(output))
out:
('Japanese', 10)
同時我們還想快速獲得一個訓練樣本(姓名及其所屬語言):
import random
def randomChoice(l):
return l[random.randint(0, len(l)-1)]
def randomTrainingExample():
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
category_tensor = torch.tensor([all_categories.index(category)],dtype=torch.long)
line_tensor = lineToTensor(line)
return category, line, category_tensor, line_tensor
for i in range(10):
category, line, category_tensor, line_tensor = randomTrainingExample()
print('category = ', category, '/ line =', line)
out:
category = Czech / line = Morava
category = English / line = Linsby
category = Dutch / line = Agteren
category = Scottish / line = Mccallum
category = German / line = Laurenz
category = Chinese / line = Long
category = Italian / line = Pittaluga
category = Japanese / line = Sugitani
category = Portuguese / line = Duarte
category = French / line = Macon
4.2 訓練網絡
現在,訓練這個網絡所需要的只是展示一堆例子,讓它做出猜測,然后告訴它是否錯了。
對於損失函數的選擇,nn.NLLLoss
是合適的,因為RNN的最后一層是nn.LogSoftmax
criterion = nn.NLLLoss()
每個循環的訓練做了如下的事情:
- 創建輸入和目標張量
- 初始隱藏狀態置0
- 讀取每個字母和
- 保持隱藏狀態給下一個字母
- 比較最終輸出到目標
- 反向傳播
- 返回輸出和丟失
learning_rate = 0.005
def train(category_tensor, line_tensor):
hidden = rnn.initHidden()
rnn.zero_grad()
for i in range(line_tensor.size()[0]):
output,hidden = rnn(line_tensor[i],hidden)
loss = criterion(output, category_tensor)
loss.backward()
for p in rnn.parameters():
p.data.add_(-learning_rate, p.grad.data)
return output, loss.item()
現在我們只需要用一堆例子來運行它。由於訓練函數同時返回輸出和損失,我們可以打印其猜測並跟蹤繪圖的損失。由於有1000個示例,我們只打印每個print_every示例,並取平均損失。
import time
import math
n_iters = 100000
print_every = 5000
plot_every = 1000
current_loss = 0
all_losses = []
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s/60)
s -= m*60
return '%dm %ds'%(m,s)
start = time.time()
for iter in range(1, n_iters+1):
category, line, category_tensor, line_tensor = randomTrainingExample()
output, loss = train(category_tensor, line_tensor)
current_loss+=loss
if iter % print_every == 0:
guess, guess_i = categoryFromOutput(output)
correct = '✓' if guess == category else '✗ (%s)' % category
print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
if iter%plot_every==0:
all_losses.append(current_loss / plot_every)
current_loss = 0
out:
5000 5% (0m 9s) 2.2742 Bazovski / Polish ✗ (Russian)
10000 10% (0m 17s) 2.8028 Rossum / Arabic ✗ (Dutch)
15000 15% (0m 24s) 0.5319 Tsahalis / Greek ✓
20000 20% (0m 32s) 1.9478 Ojeda / Spanish ✓
25000 25% (0m 40s) 3.0673 Salomon / Russian ✗ (Polish)
30000 30% (0m 47s) 1.7099 Hong / Chinese ✗ (Korean)
35000 35% (0m 55s) 1.6736 Ruaidh / Irish ✓
40000 40% (1m 3s) 0.0943 Cearbhall / Irish ✓
45000 45% (1m 10s) 1.6163 Severin / Dutch ✗ (French)
50000 50% (1m 18s) 0.1879 Horiatis / Greek ✓
55000 55% (1m 26s) 0.0733 Eliopoulos / Greek ✓
60000 60% (1m 34s) 0.8175 Pagani / Italian ✓
65000 65% (1m 41s) 0.4049 Murphy / Scottish ✓
70000 70% (1m 49s) 0.5367 Seo / Korean ✓
75000 75% (1m 58s) 0.4234 Brzezicki / Polish ✓
80000 80% (2m 6s) 0.8812 Ayugai / Japanese ✓
85000 85% (2m 13s) 1.4328 Guirguis / Greek ✗ (Arabic)
90000 90% (2m 21s) 0.3510 Dam / Vietnamese ✓
95000 95% (2m 29s) 0.0634 Teunissen / Dutch ✓
100000 100% (2m 37s) 0.4243 Laganas / Greek ✓
4.3 可視化結果
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
%matplotlib inline
plt.figure()
plt.plot(all_losses)
out:
5. 評估模型
為了了解網絡在不同類別上的表現如何,我們將創建一個混淆矩陣,指示每個實際語言(行)網絡猜測的哪種語言(列)。為了計算混淆矩陣,使用evaluate()通過網絡運行一組樣本.
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000
def evaluate(line_tensor):
hidden = rnn.initHidden()
for i in range(line_tensor.size()[0]):
output,hidden = rnn(line_tensor[i], hidden)
return output
for i in range(n_confusion):
category, line, category_tensor, line_tensor = randomTrainingExample()
output = evaluate(line_tensor)
guess, guess_i = categoryFromOutput(output)
category_i = all_categories.index(category)
confusion[category_i][guess_i]+=1
for i in range(n_categories):
confusion[i]/=(confusion[i].sum())
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)
ax.set_xticklabels(['']+all_categories,rotation=90)
ax.set_yticklabels(['']+all_categories)
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
out:
你可以從主軸上挑出明亮的點,它們可以顯示出錯誤猜測的語言,例如:韓語猜測為漢語,意大利語猜測為西班牙語。希臘語的表現似乎很好,但是英語很差(可能是因為與其他語言的重疊較多)