目的: 前期學習了一些機器學習基本算法,實際企業應用中算法是核心,運行的環境和數據處理的平台是基礎。
手段: 搭建簡易hadoop集群(由於機器限制在自己的筆記本上通過虛擬機搭建)
一、基礎環境介紹
win10
vmware15.0.0
3 ubuntu 虛擬機(1 台作為master ,另外2台作為 slave1、slave2)
hadoop2.8.5
jdk1.8
二、搭建步驟
1. 安裝vmware ,安裝ubuntu 先安裝一台,后面配置完成后直接克隆 (此處不作詳細介紹,可參考其它文檔進行搭建)
2. linux基礎環境配置
a) 創建用戶 test 執行所有安裝相關操作 :
sudo useradd -m test -s /bin/bash
sudo passwd hadoop
b)安裝基礎軟件
1. 基礎工具 . sudo apt-get install vim (edit tools) . sudo apt-get install openssh-client openssh-server (openssh service for log in the server via ssh) . sudo apt-get install nfs-common (for nfs mounting ) . sudo apt-get install git (for git tool) 2.Setup nfs service on Ubuntu for mounting . sudo apt-get install nfs-kernel-server (install nfs server) . sudo mkdir /nfsroot; . sudo chmod 777 /nfsroot ( create /nfsroot fold as mounting directory) . sudo vim /etc/exports (config the mount directory) add below line in /etc/exports: /nfsroot *(rw,sync,no_root_squash) . sudo service nfs-kernel-server restart (restart nfs service) 3. setup samba service for share folders with windows OS . sudo apt-get install samba smbclient (install necessay tools) . sudo apt-get install samba smbclient (config the samba server) . Add following lines in /etc/samba//smb.conf: [nfsroot] comment = nfsroot path = /nfsroot public = yes guest ok = yes browseable = yes writeable = yes . sudo service smbd restart (restart the samba service)
c) 配置服務器之間免密互相訪問(通過公鑰私鑰的方式)
ssh-keygen -t rsa # 會有提示,都按回車就可以
cat id_rsa.pub >> authorized_keys # 加入授權
當所有節點都克隆完成后可以測試ssh登錄: ssh 192.168.xx.xxx@test
3. 配置java和hadoop軟件
下載jdk1.8 解壓文件放在 /opt/java 目錄下,並配置環境變量 (java –version 進行測試)
下載hadoop2.8.5 解壓文件放在 /opt/hadoop 目錄下,並配置環境變量 (hadoop version 進行測試)
4. 克隆當前版本的linux
vmware有克隆虛擬機的功能,會將所有配置進行克隆
配置每台機器的域名
sudo hostname master (主節點)
sudo hostname slave1 (從節點)
sudo hostname slave2(從節點)
配置每台機器的固定ip地址,並增加域名解析配置: vim /etc/hosts 文件增加如下配置:
127.0.0.1 localhost
192.168.61.100 master
192.168.61.101 slave1
192.168.61.102 slave2
這里可以先配置一台,然后通過scp命令將配置復制到其他兩台機器上去,后面的hdfs、yarn、MapReduce的配置同樣如此。
5. 配置HDFS
到hadoop安裝目錄下配置: ./etc/hadoop/core-site.xml
<configuration> <property> <name>hadoop.tmp.dir</name> <value>file:/home/test/hadoop-2.8.5/hdfs/tmp</value> <description>A base for other temporary directories.</description> </property> <property> <name>io.file.buffer.size</name> <value>131072</value> </property> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000</value> </property> </configuration>
配置hdfs: vim ./etc/hadoop/hdfs-site.xml
<configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/opt/hadoop-2.8.5/hdfs/name</value> <final>true</final> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/opt/hadoop-2.8.5/hdfs/data</value> <final>true</final> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>master:9001</value> </property> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> <property> <name>dfs.permissions</name> <value>false</value> </property> </configuration>
6. 配置yarn
<configuration> <!-- Site specific YARN configuration properties --> <property> <name>yarn.resourcemanager.address</name> <value>master:18040</value> </property> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>master:18030</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>master:18088</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address</name> <value>master:18025</value> </property> <property> <name>yarn.resourcemanager.admin.address</name> <value>master:18141</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>1024</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>3.0</value> </property> <property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>1</value> </property> <property>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:8040</value>
</property>
<property>
<description>The address of the container manager in the NM.</description>
<name>yarn.nodemanager.address</name>
<value>0.0.0.0:8041</value>
</property>
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:8042</value>
</property> </configuration>
7. 配置mapreduce
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>yarn.app.mapreduce.am.resource.mb</name> <value>1024</value> </property> <property> <name>mapreduce.map.memory.mb</name> <value>1024</value> </property> <property> <name>mapreduce.reduce.memory.mb</name> <value>1024</value> </property> </configuration>
8. 測試:
在master節點上運行 ./sbin/start-all.sh
通過jps 可以查看 master上的namenode和slave上的datanode (結果如下)
test@master:/opt/hadoop-2.8.5$ jps
8960 Jps
7940 NameNode
8373 ResourceManager
8206 SecondaryNameNode
slave2上運行結果如下:
test@slave2:/opt/hadoop-2.8.5/logs$ jps
7301 Jps
6938 NodeManager
6767 DataNode
三、wordcount程序
在運行完start-all.sh腳本后。 就可以運行hadoop自帶的wordcount程序了。
1. 上傳文件到hdfs的wc_input中
2. 執行實例程序
./bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.5.jar wordcount /wc_input /wc_output.out7
3. 執行結果如下:
18/10/21 16:13:18 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.61.100:18040
18/10/21 16:13:20 INFO input.FileInputFormat: Total input files to process : 2
18/10/21 16:13:20 INFO mapreduce.JobSubmitter: number of splits:2
18/10/21 16:13:20 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1540109557238_0001
18/10/21 16:13:21 INFO impl.YarnClientImpl: Submitted application application_1540109557238_0001
18/10/21 16:13:21 INFO mapreduce.Job: The url to track the job: http://master:18088/proxy/application_1540109557238_0001/
18/10/21 16:13:21 INFO mapreduce.Job: Running job: job_1540109557238_0001
18/10/21 16:13:35 INFO mapreduce.Job: Job job_1540109557238_0001 running in uber mode : false
18/10/21 16:13:35 INFO mapreduce.Job: map 0% reduce 0%
18/10/21 16:13:42 INFO mapreduce.Job: map 50% reduce 0%
18/10/21 16:13:46 INFO mapreduce.Job: map 100% reduce 0%
18/10/21 16:13:51 INFO mapreduce.Job: map 100% reduce 100%
18/10/21 16:13:52 INFO mapreduce.Job: Job job_1540109557238_0001 completed successfully
18/10/21 16:13:52 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=93
FILE: Number of bytes written=473483
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=242
HDFS: Number of bytes written=39
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=7691
Total time spent by all reduces in occupied slots (ms)=3635
Total time spent by all map tasks (ms)=7691
Total time spent by all reduce tasks (ms)=3635
Total vcore-milliseconds taken by all map tasks=7691
Total vcore-milliseconds taken by all reduce tasks=3635
Total megabyte-milliseconds taken by all map tasks=7875584
Total megabyte-milliseconds taken by all reduce tasks=3722240
Map-Reduce Framework
Map input records=3
Map output records=8
Map output bytes=71
Map output materialized bytes=99
Input split bytes=203
Combine input records=8
Combine output records=8
Reduce input groups=6
Reduce shuffle bytes=99
Reduce input records=8
Reduce output records=6
Spilled Records=16
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=178
CPU time spent (ms)=2180
Physical memory (bytes) snapshot=721473536
Virtual memory (bytes) snapshot=5936779264
Total committed heap usage (bytes)=474480640
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=39
File Output Format Counters
Bytes Written=39
注: 配置、安裝、執行過程中不可避免遇到問題,需要學會看log解決問題。
參考: https://blog.csdn.net/xiao_bai_9527/article/details/79167562
