使用spark將內存中的數據寫入到hive表中


使用spark將內存中的數據寫入到hive表中

hive-site.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!--
   Licensed to the Apache Software Foundation (ASF) under one or more
   contributor license agreements.  See the NOTICE file distributed with
   this work for additional information regarding copyright ownership.
   The ASF licenses this file to You under the Apache License, Version 2.0
   (the "License"); you may not use this file except in compliance with
   the License.  You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
-->

<configuration>
    <!--hive 的元數據服務, 供spark SQL 使用-->
    <property>
            <name>hive.metastore.uris</name>
            <value>thrift://master:9083</value>
            <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
          </property>

    <!--配置mysql數據庫的鏈接URL和數據庫名metastore,?后面的表達式代表如果這個數據庫
    不存在,會自動創建-->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://master:3306/metastore?createDatabaseIfNotExist=true</value>
        <description>JDBC connect string for a JDBC metastore</description>
    </property>
    <!--指定mysql的鏈接驅動,配置jdbc的驅動-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
        <description>Driver class name for a JDBC metastore</description>
    </property>
    <!--配置mysql的用戶名和密碼-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
        <description>username to use against metastore database</description>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
        <description>password to use against metastore database</description>
    </property>

    <property>
        <name>hive.cli.print.header</name>
        <value>true</value>
        <description>Whether to print the names of the columns in query output.</description>
    </property>
    <property>
        <name>hive.cli.print.current.db</name>
        <value>true</value>
        <description>Whether to include the current database in the Hive prompt.</description>
    </property>

</configuration>

下面是示例代碼

package spark_sql

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import test.ProductData

/**
  * @Program: spark01
  * @Author: 努力就是魅力
  * @Since: 2018-10-19 08:30
  *         Description:
  *
  *         使用spark將內存中的數據寫入到hive表中,這是一個可以完整運行的例子
  *
  *
  *    下面是hive表查詢的結果
  *         hive (hadoop10)> select * from data_block;
  *         OK
  *         data_block.ip	data_block.time	data_block.phonenum
  *         40.234.66.122	2018-10-12 09:35:21
  *         5.150.203.160	2018-10-03 14:41:09	13389202989
  *
  **/

case class Datablock(ip: String, time:String, phoneNum:String)

object WriteTabletoHive {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .master("local[*]")
      .appName("WriteTableToHive")
      .config("spark.sql.warehouse.dir","D:\\reference-data\\spark01\\spark-warehouse")
      .enableHiveSupport()
      .getOrCreate()

    import spark.implicits._

    val schemaString = "ip time phoneNum"

    val fields = schemaString.split(" ")
      .map(fieldName => StructField(fieldName, StringType,nullable = true))

    val schema = StructType(fields)

   // val datablockDS = Seq(Datablock(ProductData.getRandomIp,ProductData.getRecentAMonthRandomTime("yyyy-MM-dd HH:mm:ss"),ProductData.getRandomPhoneNumber)).toDS()

 // val datablockDS = Seq(Datablock("192.168.40.122","2018-01-01 12:25:25","18866556699")).toDS()

    datablockDS.show()

    datablockDS.toDF().createOrReplaceTempView("dataBlock")


      spark.sql("select * from dataBlock")
        .write.mode("append")
        .saveAsTable("hadoop10.data_block")


  }
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM