There are N workers. The i-th worker has a quality[i] and a minimum wage expectation wage[i].
Now we want to hire exactly K workers to form a paid group. When hiring a group of K workers, we must pay them according to the following rules:
- Every worker in the paid group should be paid in the ratio of their quality compared to other workers in the paid group.
- Every worker in the paid group must be paid at least their minimum wage expectation.
Return the least amount of money needed to form a paid group satisfying the above conditions.
Example 1:
Input: quality = [10,20,5], wage = [70,50,30], K = 2 Output: 105.00000 Explanation: We pay 70 to 0-th worker and 35 to 2-th worker.
Example 2:
Input: quality = [3,1,10,10,1], wage = [4,8,2,2,7], K = 3 Output: 30.66667 Explanation: We pay 4 to 0-th worker, 13.33333 to 2-th and 3-th workers seperately.
Note:
1 <= K <= N <= 10000, whereN = quality.length = wage.length1 <= quality[i] <= 100001 <= wage[i] <= 10000- Answers within
10^-5of the correct answer will be considered correct.
有N個工人,第i個工人的質量是quality[i],最小工資期盼是wage[i],現在想雇K個工人組成一個支付組,返回所需的最小花費。有兩個條件:
1. K個工人的質量和給他開的工資的比例是相同的。
2. 每個工人都要滿足他的最小期望工資。
解法:最大堆, heapq, PriorityQueue。首先對付工資和質量的比率進行排序wage/quality,同時記錄quality,也就是(wage/quality, quality),代表一個工人情況,比率越大說明工人效率越低。選定的K個人最后要按照相同的比率來支付工資,為了保證每個人的最低工資標准,只能選定比率最高的人的比率來支付工資。每個人的支付工資:wage = ratio * quality,總的支付工資:total wage = ratio * total quality,在ratio相同的情況小,總的quality越小越好。用一個變量result記錄最小花費,初始為最大浮點數。循環排序好的工資比率,用一個變量qsum累加quality,用一個最大堆記錄當前的quality,堆頂是最大的quality,如果堆長度等於K+1,就彈出quality最大的,同時qsum中去掉這個最大值。堆滿足K個工人的時候,每次都計算qsum * ratio,和result比較取小的。
Java:
public double mincostToHireWorkers(int[] q, int[] w, int K) {
double[][] workers = new double[q.length][2];
for (int i = 0; i < q.length; ++i)
workers[i] = new double[]{(double)(w[i]) / q[i], (double)q[i]};
Arrays.sort(workers, (a, b) -> Double.compare(a[0], b[0]));
double res = Double.MAX_VALUE, qsum = 0;
PriorityQueue<Double> pq = new PriorityQueue<>();
for (double[] worker: workers) {
qsum += worker[1];
pq.add(-worker[1]);
if (pq.size() > K) qsum += pq.poll();
if (pq.size() == K) res = Math.min(res, qsum * worker[0]);
}
return res;
}
Python:
def mincostToHireWorkers(self, quality, wage, K):
workers = sorted([float(w) / q, q] for w, q in zip(wage, quality))
res = float('inf')
qsum = 0
heap = []
for r, q in workers:
heapq.heappush(heap, -q)
qsum += q
if len(heap) > K: qsum += heapq.heappop(heap)
if len(heap) == K: res = min(res, qsum * r)
return res
Python:
# Time: O(nlogn)
# Space : O(n)
import itertools
import heapq
class Solution(object):
def mincostToHireWorkers(self, quality, wage, K):
"""
:type quality: List[int]
:type wage: List[int]
:type K: int
:rtype: float
"""
workers = [[float(w)/q, q] for w, q in itertools.izip(wage, quality)]
workers.sort()
result = float("inf")
qsum = 0
max_heap = []
for r, q in workers:
qsum += q
heapq.heappush(max_heap, -q)
if len(max_heap) > K:
qsum -= -heapq.heappop(max_heap)
if len(max_heap) == K:
result = min(result, qsum*r)
return result
Python: O(nlogn) time,O(n) space
class Solution(object):
def mincostToHireWorkers(self, quality, wage, K):
"""
:type quality: List[int]
:type wage: List[int]
:type K: int
:rtype: float
"""
# 按比例排序,nlogn
workers = sorted([float(wage[i])/quality[i], quality[i]] for i in range(len(quality)))
res,qsum = float('inf'),0
heap = []
for i in range(len(workers)):
# 選定比例 r
r,q = workers[i]
heapq.heappush(heap,-q)
# qsum始終記錄k個人的quality之和,乘以r即為最后結果
qsum += q
if len(heap) > K:
# 始終丟棄quality最大的人
qsum += heapq.heappop(heap)
if len(heap) == K:
res = min(res, qsum * r)
return res
C++:
double mincostToHireWorkers(vector<int> q, vector<int> w, int K) {
vector<vector<double>> workers;
for (int i = 0; i < q.size(); ++i)
workers.push_back({(double)(w[i]) / q[i], (double)q[i]});
sort(workers.begin(), workers.end());
double res = DBL_MAX, qsum = 0;
priority_queue<int> pq;
for (auto worker: workers) {
qsum += worker[1], pq.push(worker[1]);
if (pq.size() > K) qsum -= pq.top(), pq.pop();
if (pq.size() == K) res = min(res, qsum * worker[0]);
}
return res;
}
C++:
// Time: O(nlogn)
// Space: O(n)
class Solution {
public:
double mincostToHireWorkers(vector<int>& quality, vector<int>& wage, int K) {
vector<pair<double, int>> workers;
for (int i = 0; i < quality.size(); ++i) {
workers.emplace_back(static_cast<double>(wage[i]) / quality[i],
quality[i]);
}
sort(workers.begin(), workers.end());
auto result = numeric_limits<double>::max();
auto sum = 0.0;
priority_queue<int> max_heap;
for (const auto& worker: workers) {
sum += worker.second;
max_heap.emplace(worker.second);
if (max_heap.size() > K) {
sum -= max_heap.top(), max_heap.pop();
}
if (max_heap.size() == K) {
result = min(result, sum * worker.first);
}
}
return result;
}
};
All LeetCode Questions List 題目匯總
