如何合理設置線程池大小


要想合理的配置線程池的大小,首先得分析任務的特性,可以從以下幾個角度分析:

  1. 任務的性質:CPU密集型任務、IO密集型任務、混合型任務。
  2. 任務的優先級:高、中、低。
  3. 任務的執行時間:長、中、短。
  4. 任務的依賴性:是否依賴其他系統資源,如數據庫連接等。

性質不同的任務可以交給不同規模的線程池執行。

對於不同性質的任務來說,CPU密集型任務應配置盡可能小的線程,如配置CPU個數+1的線程數,IO密集型任務應配置盡可能多的線程,因為IO操作不占用CPU,不要讓CPU閑下來,應加大線程數量,如配置兩倍CPU個數+1,而對於混合型的任務,如果可以拆分,拆分成IO密集型和CPU密集型分別處理,前提是兩者運行的時間是差不多的,如果處理時間相差很大,則沒必要拆分了。

若任務對其他系統資源有依賴,如某個任務依賴數據庫的連接返回的結果,這時候等待的時間越長,則CPU空閑的時間越長,那么線程數量應設置得越大,才能更好的利用CPU。
當然具體合理線程池值大小,需要結合系統實際情況,在大量的嘗試下比較才能得出,以上只是前人總結的規律。

在這篇如何合理地估算線程池大小?文章中發現了一個估算合理值的公式

最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目

比如平均每個線程CPU運行時間為0.5s,而線程等待時間(非CPU運行時間,比如IO)為1.5s,CPU核心數為8,那么根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化為:

最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目

可以得出一個結論:
線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。
以上公式與之前的CPU和IO密集型任務設置線程數基本吻合。

並發編程網上的一個問題
高並發、任務執行時間短的業務怎樣使用線程池?並發不高、任務執行時間長的業務怎樣使用線程池?並發高、業務執行時間長的業務怎樣使用線程池?
(1)高並發、任務執行時間短的業務,線程池線程數可以設置為CPU核數+1,減少線程上下文的切換
(2)並發不高、任務執行時間長的業務要區分開看:
  a)假如是業務時間長集中在IO操作上,也就是IO密集型的任務,因為IO操作並不占用CPU,所以不要讓所有的CPU閑下來,可以適當加大線程池中的線程數目,讓CPU處理更多的業務
  b)假如是業務時間長集中在計算操作上,也就是計算密集型任務,這個就沒辦法了,和(1)一樣吧,線程池中的線程數設置得少一些,減少線程上下文的切換
(3)並發高、業務執行時間長,解決這種類型任務的關鍵不在於線程池而在於整體架構的設計,看看這些業務里面某些數據是否能做緩存是第一步,增加服務器是第二步,至於線程池的設置,設置參考(2)。最后,業務執行時間長的問題,也可能需要分析一下,看看能不能使用中間件對任務進行拆分和解耦。

 

如何合理地估算線程池大小?

這個問題雖然看起來很小,卻並不那么容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少為20,然后假設每個Transaction由一個線程完成,繼續假設平均每個線程處理一個Transaction的時間為4s。那么問題轉化為:

如何設計線程池大小,使得可以在1s內處理完20個Transaction?

計算過程很簡單,每個線程的處理能力為0.25TPS,那么要達到20TPS,顯然需要20/0.25=80個線程。

很顯然這個估算方法很天真,因為它沒有考慮到CPU數目。一般服務器的CPU核數為16或者32,如果有80個線程,那么肯定會帶來太多不必要的線程上下文切換開銷。

再來第二種簡單的但不知是否可行的方法(N為CPU總核數):

  • 如果是CPU密集型應用,則線程池大小設置為N+1
  • 如果是IO密集型應用,則線程池大小設置為2N+1

如果一台服務器上只部署這一個應用並且只有這一個線程池,那么這種估算或許合理,具體還需自行測試驗證。

接下來在這個文檔:服務器性能IO優化 中發現一個估算公式:

1 最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目

比如平均每個線程CPU運行時間為0.5s,而線程等待時間(非CPU運行時間,比如IO)為1.5s,CPU核心數為8,那么根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化為:

1 最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目

可以得出一個結論:

線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。

上一種估算方法也和這個結論相合。

一個系統最快的部分是CPU,所以決定一個系統吞吐量上限的是CPU。增強CPU處理能力,可以提高系統吞吐量上限。但根據短板效應,真實的系統吞吐量並不能單純根據CPU來計算。那要提高系統吞吐量,就需要從“系統短板”(比如網絡延遲、IO)着手:

  • 盡量提高短板操作的並行化比率,比如多線程下載技術
  • 增強短板能力,比如用NIO替代IO

第一條可以聯系到Amdahl定律,這條定律定義了串行系統並行化后的加速比計算公式:

1 加速比=優化前系統耗時 / 優化后系統耗時

加速比越大,表明系統並行化的優化效果越好。Addahl定律還給出了系統並行度、CPU數目和加速比的關系,加速比為Speedup,系統串行化比率(指串行執行代碼所占比率)為F,CPU數目為N:

1 Speedup <= 1 / (F + (1-F)/N)

當N足夠大時,串行化比率F越小,加速比Speedup越大。

寫到這里,我突然冒出一個問題。

是否使用線程池就一定比使用單線程高效呢?

答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在於:

  • 多線程帶來線程上下文切換開銷,單線程就沒有這種開銷

當然“Redis很快”更本質的原因在於:Redis基本都是內存操作,這種情況下單線程可以很高效地利用CPU。而多線程適用場景一般是:存在相當比例的IO和網絡操作。

所以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結合系統真實情況(比如是IO密集型或者是CPU密集型或者是純內存操作)和硬件環境(CPU、內存、硬盤讀寫速度、網絡狀況等)來不斷嘗試達到一個符合實際的合理估算值。

最后來一個“Dark Magic”估算方法(因為我暫時還沒有搞懂它的原理),使用下面的類:

001 package pool_size_calculate;
002  
003 import java.math.BigDecimal;
004 import java.math.RoundingMode;
005 import java.util.Timer;
006 import java.util.TimerTask;
007 import java.util.concurrent.BlockingQueue;
008  
009 /**
010  * A class that calculates the optimal thread pool boundaries. It takes the
011  * desired target utilization and the desired work queue memory consumption as
012  * input and retuns thread count and work queue capacity.
013  *
014  * @author Niklas Schlimm
015  *
016  */
017 public abstract class PoolSizeCalculator {
018  
019     /**
020      * The sample queue size to calculate the size of a single {@link Runnable}
021      * element.
022      */
023     private final int SAMPLE_QUEUE_SIZE = 1000;
024  
025     /**
026      * Accuracy of test run. It must finish within 20ms of the testTime
027      * otherwise we retry the test. This could be configurable.
028      */
029     private final int EPSYLON = 20;
030  
031     /**
032      * Control variable for the CPU time investigation.
033      */
034     private volatile boolean expired;
035  
036     /**
037      * Time (millis) of the test run in the CPU time calculation.
038      */
039     private final long testtime = 3000;
040  
041     /**
042      * Calculates the boundaries of a thread pool for a given {@link Runnable}.
043      *
044      * @param targetUtilization
045      *            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)     */     protected void calculateBoundaries(BigDecimal targetUtilization,            BigDecimal targetQueueSizeBytes) {      calculateOptimalCapacity(targetQueueSizeBytes);         Runnable task = creatTask();        start(task);        start(task); // warm up phase       long cputime = getCurrentThreadCPUTime();       start(task); // test intervall      cputime = getCurrentThreadCPUTime() - cputime;      long waittime = (testtime * 1000000) - cputime;         calculateOptimalThreadCount(cputime, waittime, targetUtilization);  }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();      BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(              mem), RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced "                 + creatTask().getClass().getName() + " which took " + mem               + " bytes in a queue");         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);       System.out.println("* Recommended queue capacity (bytes): "                 + queueCapacity);   }   /**      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system   */     private void calculateOptimalThreadCount(long cpu, long wait,           BigDecimal targetUtilization) {         BigDecimal waitTime = new BigDecimal(wait);         BigDecimal computeTime = new BigDecimal(cpu);       BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                 .multiply(                      new BigDecimal(1).add(waitTime.divide(computeTime,                              RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);         System.out.println("Wait time (nanos): " + wait);       System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                 + computeTime + ")");       System.out.println("* Optimal thread count: " + optimalthreadcount);    }   /**      * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation   */     public void start(Runnable task) {      long start = 0;         int runs = 0;       do {            if (++runs > 5) {
046                 throw new IllegalStateException("Test not accurate");
047             }
048             expired = false;
049             start = System.currentTimeMillis();
050             Timer timer = new Timer();
051             timer.schedule(new TimerTask() {
052                 public void run() {
053                     expired = true;
054                 }
055             }, testtime);
056             while (!expired) {
057                 task.run();
058             }
059             start = System.currentTimeMillis() - start;
060             timer.cancel();
061         } while (Math.abs(start - testtime) > EPSYLON);
062         collectGarbage(3);
063     }
064  
065     private void collectGarbage(int times) {
066         for (int i = 0; i < times; i++) {
067             System.gc();
068             try {
069                 Thread.sleep(10);
070             } catch (InterruptedException e) {
071                 Thread.currentThread().interrupt();
072                 break;
073             }
074         }
075     }
076  
077     /**
078      * Calculates the memory usage of a single element in a work queue. Based on
079      * Heinz Kabbutz' ideas
080      * (http://www.javaspecialists.eu/archive/Issue029.html).
081      *
082      * @return memory usage of a single {@link Runnable} element in the thread
083      *         pools work queue
084      */
085     public long calculateMemoryUsage() {
086         BlockingQueue queue = createWorkQueue();
087         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
088             queue.add(creatTask());
089         }
090         long mem0 = Runtime.getRuntime().totalMemory()
091                 - Runtime.getRuntime().freeMemory();
092         long mem1 = Runtime.getRuntime().totalMemory()
093                 - Runtime.getRuntime().freeMemory();
094         queue = null;
095         collectGarbage(15);
096         mem0 = Runtime.getRuntime().totalMemory()
097                 - Runtime.getRuntime().freeMemory();
098         queue = createWorkQueue();
099         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
100             queue.add(creatTask());
101         }
102         collectGarbage(15);
103         mem1 = Runtime.getRuntime().totalMemory()
104                 - Runtime.getRuntime().freeMemory();
105         return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
106     }
107  
108     /**
109      * Create your runnable task here.
110      *
111      * @return an instance of your runnable task under investigation
112      */
113     protected abstract Runnable creatTask();
114  
115     /**
116      * Return an instance of the queue used in the thread pool.
117      *
118      * @return queue instance
119      */
120     protected abstract BlockingQueue createWorkQueue();
121  
122     /**
123      * Calculate current cpu time. Various frameworks may be used here,
124      * depending on the operating system in use. (e.g.
125      * http://www.hyperic.com/products/sigar). The more accurate the CPU time
126      * measurement, the more accurate the results for thread count boundaries.
127      *
128      * @return current cpu time of current thread
129      */
130     protected abstract long getCurrentThreadCPUTime();
131  
132 }

然后自己繼承這個抽象類並實現它的三個抽象方法,比如下面是我寫的一個示例(任務是請求網絡數據),其中我指定期望CPU利用率為1.0(即100%),任務隊列總大小不超過100,000字節:

01 package pool_size_calculate;
02  
03 import java.io.BufferedReader;
04 import java.io.IOException;
05 import java.io.InputStreamReader;
06 import java.lang.management.ManagementFactory;
07 import java.math.BigDecimal;
08 import java.net.HttpURLConnection;
09 import java.net.URL;
10 import java.util.concurrent.BlockingQueue;
11 import java.util.concurrent.LinkedBlockingQueue;
12  
13 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
14  
15     @Override
16     protected Runnable creatTask() {
17         return new AsyncIOTask();
18     }
19  
20     @Override
21     protected BlockingQueue createWorkQueue() {
22         return new LinkedBlockingQueue(1000);
23     }
24  
25     @Override
26     protected long getCurrentThreadCPUTime() {
27         return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
28     }
29  
30     public static void main(String[] args) {
31         PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
32         poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
33     }
34  
35 }
36  
37 /**
38  * 自定義的異步IO任務
39  * @author Will
40  *
41  */
42 class AsyncIOTask implements Runnable {
43  
44     @Override
45     public void run() {
46         HttpURLConnection connection = null;
47         BufferedReader reader = null;
48         try {
49             String getURL = "http://baidu.com";
50             URL getUrl = new URL(getURL);
51  
52             connection = (HttpURLConnection) getUrl.openConnection();
53             connection.connect();
54             reader = new BufferedReader(new InputStreamReader(
55                     connection.getInputStream()));
56  
57             String line;
58             while ((line = reader.readLine()) != null) {
59                 // empty loop
60             }
61         }
62  
63         catch (IOException e) {
64  
65         } finally {
66             if(reader != null) {
67                 try {
68                     reader.close();
69                 }
70                 catch(Exception e) {
71  
72                 }
73             }
74             connection.disconnect();
75         }
76  
77     }
78  
79 }

得到的輸出如下:

01 Target queue memory usage (bytes): 100000
02 createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
03 Formula: 100000 / 40
04 * Recommended queue capacity (bytes): 2500
05 Number of CPU: 4
06 Target utilization: 1
07 Elapsed time (nanos): 3000000000
08 Compute time (nanos): 47181000
09 Wait time (nanos): 2952819000
10 Formula: 4 * 1 * (1 + 2952819000 / 47181000)
11 * Optimal thread count: 256

推薦的任務隊列大小為2500,線程數為256,有點出乎意料之外。我可以如下構造一個線程池:

1 ThreadPoolExecutor pool =
2  new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

原創文章,轉載請注明: 轉載自並發編程網 – ifeve.com本文鏈接地址: 如何合理地估算線程池大小?


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM