看圖說話講事件驅動模型
在UI編程中,常常要對鼠標點擊進行相應,首先如何獲得鼠標點擊呢?
方式一:創建一個線程,該線程一直循環檢測是否有鼠標點擊,那么這個方式有以下幾個缺點:
1. CPU資源浪費,可能鼠標點擊的頻率非常小,但是掃描線程還是會一直循環檢測,這會造成很多的CPU資源浪費;如果掃描鼠標點擊的接口是阻塞的呢?
2. 如果是堵塞的,又會出現下面這樣的問題,如果我們不但要掃描鼠標點擊,還要掃描鍵盤是否按下,由於掃描鼠標時被堵塞了,那么可能永遠不會去掃描鍵盤;
3. 如果一個循環需要掃描的設備非常多,這又會引來響應時間的問題;
所以,該方式是非常不好的。
方式二:就是事件驅動模型
目前大部分的UI編程都是事件驅動模型,如很多UI平台都會提供onClick()事件,這個事件就代表鼠標按下事件。事件驅動模型大體思路如下:
1. 有一個事件(消息)隊列;
2. 鼠標按下時,往這個隊列中增加一個點擊事件(消息);
3. 有個循環,不斷從隊列取出事件,根據不同的事件,調用不同的函數,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的處理函數指針,這樣,每個消息都有獨立的處理函數;
事件驅動編程是一種編程范式,這里程序的執行流由外部事件來決定。它的特點是包含一個事件循環,當外部事件發生時使用回調機制來觸發相應的處理。另外兩種常見的編程范式是(單線程)同步以及多線程編程。
讓我們用例子來比較和對比一下單線程、多線程以及事件驅動編程模型。下圖展示了隨着時間的推移,這三種模式下程序所做的工作。這個程序有3個任務需要完成,每個任務都在等待I/O操作時阻塞自身。阻塞在I/O操作上所花費的時間已經用灰色框標示出來了。
在單線程同步模型中,任務按照順序執行。如果某個任務因為I/O而阻塞,其他所有的任務都必須等待,直到它完成之后它們才能依次執行。這種明確的執行順序和串行化處理的行為是很容易推斷得出的。如果任務之間並沒有互相依賴的關系,但仍然需要互相等待的話這就使得程序不必要的降低了運行速度。
在多線程版本中,這3個任務分別在獨立的線程中執行。這些線程由操作系統來管理,在多處理器系統上可以並行處理,或者在單處理器系統上交錯執行。這使得當某個線程阻塞在某個資源的同時其他線程得以繼續執行。與完成類似功能的同步程序相比,這種方式更有效率,但程序員必須寫代碼來保護共享資源,防止其被多個線程同時訪問。多線程程序更加難以推斷,因為這類程序不得不通過線程同步機制如鎖、可重入函數、線程局部存儲或者其他機制來處理線程安全問題,如果實現不當就會導致出現微妙且令人痛不欲生的bug。
在事件驅動版本的程序中,3個任務交錯執行,但仍然在一個單獨的線程控制中。當處理I/O或者其他昂貴的操作時,注冊一個回調到事件循環中,然后當I/O操作完成時繼續執行。回調描述了該如何處理某個事件。事件循環輪詢所有的事件,當事件到來時將它們分配給等待處理事件的回調函數。這種方式讓程序盡可能的得以執行而不需要用到額外的線程。事件驅動型程序比多線程程序更容易推斷出行為,因為程序員不需要關心線程安全問題。
當我們面對如下的環境時,事件驅動模型通常是一個好的選擇:
- 程序中有許多任務,而且…
- 任務之間高度獨立(因此它們不需要互相通信,或者等待彼此)而且…
- 在等待事件到來時,某些任務會阻塞。
當應用程序需要在任務間共享可變的數據時,這也是一個不錯的選擇,因為這里不需要采用同步處理。
網絡應用程序通常都有上述這些特點,這使得它們能夠很好的契合事件驅動編程模型。
此處要提出一個問題,就是,上面的事件驅動模型中,只要一遇到IO就注冊一個事件,然后主程序就可以繼續干其它的事情了,只到io處理完畢后,繼續恢復之前中斷的任務,這本質上是怎么實現的呢?哈哈,下面我們就來一起揭開這神秘的面紗。。。。
看圖說話講事件驅動模型
在UI編程中,常常要對鼠標點擊進行相應,首先如何獲得鼠標點擊呢?
方式一:創建一個線程,該線程一直循環檢測是否有鼠標點擊,那么這個方式有以下幾個缺點:
1. CPU資源浪費,可能鼠標點擊的頻率非常小,但是掃描線程還是會一直循環檢測,這會造成很多的CPU資源浪費;如果掃描鼠標點擊的接口是阻塞的呢?
2. 如果是堵塞的,又會出現下面這樣的問題,如果我們不但要掃描鼠標點擊,還要掃描鍵盤是否按下,由於掃描鼠標時被堵塞了,那么可能永遠不會去掃描鍵盤;
3. 如果一個循環需要掃描的設備非常多,這又會引來響應時間的問題;
所以,該方式是非常不好的。
方式二:就是事件驅動模型
目前大部分的UI編程都是事件驅動模型,如很多UI平台都會提供onClick()事件,這個事件就代表鼠標按下事件。事件驅動模型大體思路如下:
1. 有一個事件(消息)隊列;
2. 鼠標按下時,往這個隊列中增加一個點擊事件(消息);
3. 有個循環,不斷從隊列取出事件,根據不同的事件,調用不同的函數,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的處理函數指針,這樣,每個消息都有獨立的處理函數;
事件驅動編程是一種編程范式,這里程序的執行流由外部事件來決定。它的特點是包含一個事件循環,當外部事件發生時使用回調機制來觸發相應的處理。另外兩種常見的編程范式是(單線程)同步以及多線程編程。
讓我們用例子來比較和對比一下單線程、多線程以及事件驅動編程模型。下圖展示了隨着時間的推移,這三種模式下程序所做的工作。這個程序有3個任務需要完成,每個任務都在等待I/O操作時阻塞自身。阻塞在I/O操作上所花費的時間已經用灰色框標示出來了。
在單線程同步模型中,任務按照順序執行。如果某個任務因為I/O而阻塞,其他所有的任務都必須等待,直到它完成之后它們才能依次執行。這種明確的執行順序和串行化處理的行為是很容易推斷得出的。如果任務之間並沒有互相依賴的關系,但仍然需要互相等待的話這就使得程序不必要的降低了運行速度。
在多線程版本中,這3個任務分別在獨立的線程中執行。這些線程由操作系統來管理,在多處理器系統上可以並行處理,或者在單處理器系統上交錯執行。這使得當某個線程阻塞在某個資源的同時其他線程得以繼續執行。與完成類似功能的同步程序相比,這種方式更有效率,但程序員必須寫代碼來保護共享資源,防止其被多個線程同時訪問。多線程程序更加難以推斷,因為這類程序不得不通過線程同步機制如鎖、可重入函數、線程局部存儲或者其他機制來處理線程安全問題,如果實現不當就會導致出現微妙且令人痛不欲生的bug。
在事件驅動版本的程序中,3個任務交錯執行,但仍然在一個單獨的線程控制中。當處理I/O或者其他昂貴的操作時,注冊一個回調到事件循環中,然后當I/O操作完成時繼續執行。回調描述了該如何處理某個事件。事件循環輪詢所有的事件,當事件到來時將它們分配給等待處理事件的回調函數。這種方式讓程序盡可能的得以執行而不需要用到額外的線程。事件驅動型程序比多線程程序更容易推斷出行為,因為程序員不需要關心線程安全問題。
當我們面對如下的環境時,事件驅動模型通常是一個好的選擇:
- 程序中有許多任務,而且…
- 任務之間高度獨立(因此它們不需要互相通信,或者等待彼此)而且…
- 在等待事件到來時,某些任務會阻塞。
當應用程序需要在任務間共享可變的數據時,這也是一個不錯的選擇,因為這里不需要采用同步處理。
網絡應用程序通常都有上述這些特點,這使得它們能夠很好的契合事件驅動編程模型。
此處要提出一個問題,就是,上面的事件驅動模型中,只要一遇到IO就注冊一個事件,然后主程序就可以繼續干其它的事情了,只到io處理完畢后,繼續恢復之前中斷的任務,這本質上是怎么實現的呢?哈哈,下面我們就來一起揭開這神秘的面紗。。。。