一、線程池執行任務的流程
-
如果線程池工作線程數<corePoolSize,創建新線程執行task,並不斷輪訓t等待隊列處理task。
-
如果線程池工作線程數>=corePoolSize並且等待隊列未滿,將task插入等待隊列。
-
如果線程池工作流程數>=corePoolSize並且等待隊列已滿,且工作線程數<maximumPoolSize,創建新線程執行task。
-
如果線程池工作流程數>=corePoolSize並且等待隊列已滿,且工作線程數=maximumPoolSize,執行拒絕策略。
二、execute()原理
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * 如果運行的線程數小於corePoolSize,嘗試創建一個新線程(Worker),並執行它的第一個任務command * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * 如果task成功插入等待隊列,我們仍需要進行雙重校驗是否可以成功添加一個線程 (因為有的線程可能在我們上次檢查以后已經死掉了)或者在我們進入這個方法后線程池已經關閉了 * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. 如果等待隊列已滿,我們嘗試新創建一個線程。如果創建失敗,我們知道線程已關閉或者已飽和,因此我們拒絕改任務。 */ int c = ctl.get(); //工作線程小於核心線程數,創建新的線程 if (workerCountOf(c) < corePoolSize) { //創建新的worker立即執行command,並且輪訓workQueue處理task if (addWorker(command, true)) return; c = ctl.get(); } //線程池在運行狀態且可以將task插入隊列 //第一次校驗線程池在運行狀態 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); //第二次校驗,防止在第一次校驗通過后線程池關閉。如果線程池關閉,在隊列中刪除task並拒絕task if (! isRunning(recheck) && remove(command)) reject(command); //如果線程數=0(線程都死掉了,比如:corePoolSize=0),新建線程且未指定firstTask,僅僅去輪訓workQueue else if (workerCountOf(recheck) == 0) addWorker(null, false); } //線程隊列已滿,嘗試創建新線程執行task,創建失敗后拒絕task //創建失敗原因:1.線程池關閉;2.線程數已經達到maxPoolSize else if (!addWorker(command, false)) reject(command); }
1. addWorker(Runnable firstTask, boolean core)
private boolean addWorker(Runnable firstTask, boolean core) { retry: //外層循環判斷線程池的狀態 for (;;) { int c = ctl.get(); int rs = runStateOf(c);//線程池狀態 // Check if queue empty only if necessary. //線程池狀態:RUNNING = -1、SHUTDOWN = 0、STOP = 1、TIDYING = 2、TERMINATED = 3 //線程池至少是shutdown狀態 if (rs >= SHUTDOWN && //除了線程池正在關閉(shutdown),隊列里還有未處理的task的情況,其他都不能添加 ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; //內層循環判斷是否到達容量上限,worker+1 for (;;) { int wc = workerCountOf(c);//worker數量 //worker大於Integer最大上限 //或到達邊界上限 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //CAS worker+1 if (compareAndIncrementWorkerCount(c)) break retry;//成功了跳出循環 c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) //如果線程池狀態發生變化,重試外層循環 continue retry; // else CAS failed due to workerCount change; retry inner loop
// CAS失敗workerCount被其他線程改變,重新嘗試內層循環CAS對workerCount+1
} } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { final ReentrantLock mainLock = this.mainLock; w = new Worker(firstTask); //1.state置為-1,Worker繼承了AbstractQueuedSynchronizer //2.設置firstTask屬性 //3.Worker實現了Runable接口,將this作為入參創建線程 final Thread t = w.thread; if (t != null) {
//addWorker需要加鎖 mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int c = ctl.get(); int rs = runStateOf(c); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w);//workers是HashSet<Worker>
//設置最大線程池大小 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
addWorker(Runnable firstTask, boolean core)
參數:
firstTask: worker線程的初始任務,可以為空
core: true:將corePoolSize作為上限,false:將maximumPoolSize作為上限
addWorker方法有4種傳參的方式:
1、addWorker(command, true)
2、addWorker(command, false)
3、addWorker(null, false)
4、addWorker(null, true)
在execute方法中就使用了前3種,結合這個核心方法進行以下分析
1、線程數小於corePoolSize。判斷workers(HashSet<Worker>)大小,如果worker數量>=corePoolSize 返回false,否則創建worker添加到workers,並執行worker的run方法(執行firstTask並輪詢tworkQueue);
2、線程數大於corePoolSize且workQueue已滿。如果worker數量>=maximumPoolSize返回false,否則創建worker添加到workers,並執行worker的run方法(執行firstTask並輪詢tworkQueue);
3.、沒有worker存活,創建worker去輪詢workQueue,長度限制maximumPoolSize。
4、prestartAllCoreThreads()方法調用,啟動所有的核心線程去輪詢workQueue。因為addWorker是需要上鎖的,預啟動核心線程可以提高執行效率。
2. ThreadPoolExecutor 內部類Worker
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping. * This class opportunistically extends AbstractQueuedSynchronizer * to simplify acquiring and releasing a lock surrounding each * task execution. This protects against interrupts that are * intended to wake up a worker thread waiting for a task from * instead interrupting a task being run. We implement a simple * non-reentrant mutual exclusion lock rather than use * ReentrantLock because we do not want worker tasks to be able to * reacquire the lock when they invoke pool control methods like * setCorePoolSize. Additionally, to suppress interrupts until * the thread actually starts running tasks, we initialize lock * state to a negative value, and clear it upon start (in * runWorker).
* 1.Worker類主要負責運行線程狀態的控制。
* 2.Worker繼承了AQS實現了簡單的獲取鎖和釋放所的操作。來避免中斷等待執行任務的線程時,中斷正在運行中的線程(線程剛啟動,還沒開始執行任務)。
* 3.自己實現不可重入鎖,是為了避免在實現線程池控狀態控制的方法,例如:setCorePoolSize的時候中斷正在開始運行的線程。
* setCorePoolSize可能會調用interruptIdleWorkers(),該方法中會調用worker的tryLock()方法中斷線程,自己實現鎖可以確保工作線程啟動之前不會被中斷 */ private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker //狀態置為-1,如果中斷線程需要CAS將state 從0->1,以此來保證能只中斷從workerQueue getTask的線程 this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); //首先執行w.unlock,就是把state置為0,對該線程的中斷就可以進行了 } // Lock methods // // The value 0 represents the unlocked state. // The value 1 represents the locked state. protected boolean isHeldExclusively() { return getState() != 0; } //在setCorePoolSize/shutdown等方法中斷worker線程時需要調用該方法,確保中斷的是從workerQueue getTask的線程 protected boolean tryAcquire(int unused) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } //調用tryRelease修改state=0,LockSupport.unpark(thread)下一個等待鎖的線程 public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() { Thread t; if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } }