tf.reduce_sum()_tf.reduce_mean()_tf.reduce_max()


根據官方文檔:

reduce_sum應該理解為壓縮求和,用於降維

 

tf.reduce_sum(input_tensor,axis=None,keepdims=None,name=None,reduction_indices=None,keep_dims=None)

 

Args:

  • input_tensor: The tensor to reduce. Should have numeric type. #輸入
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range (rank(input_tensor), rank(input_tensor)).#取0第一維,取1第二維,取-1最后一維
  • keepdims: If true, retains reduced dimensions with length 1.#按照原來的維度
  • name: A name for the operation (optional).
  • reduction_indices: The old (deprecated) name for axis.#axis的原來的名字
  • keep_dims: Deprecated alias for keepdims.
    import tensorflow as tf
    import numpy as np
     
    x = tf.constant([[1,1,1],[2,2,2]])
    with tf.Session() as sess:
        print(sess.run(tf.reduce_sum(x))) #所有求和
        print(sess.run(tf.reduce_sum(x,0))) #按 列 求和
        print(sess.run(tf.reduce_sum(x,1))) #按 行 求和
        print(sess.run(tf.reduce_sum(x,1,keepdims=True))) #按維度 行 求和
        print(sess.run(tf.reduce_sum(x,[0,1])))  #行列求和
        print(sess.run(tf.reduce_sum(x,reduction_indices=[1])))
        

    輸出結果:

    9
    [3 3 3]
    [3 6]
    [[3]
     [6]]
    9
    [3 6]

    求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    參數1--input_tensor:待求值的tensor。

    參數2--reduction_indices:在哪一維上求解。

    參數(3)(4)可忽略

 

import tensorflow as tf
import numpy as np
 
x = tf.constant([[1,2],[3,4]])
with tf.Session() as sess:
    print(sess.run(tf.reduce_mean(x))) #所有求平均
    print(sess.run(tf.reduce_mean(x, 0))) #按 列 求和
    print(sess.run( tf.reduce_mean(x, 1)))#按行求平均
    print(sess.run(tf.reduce_max(x)))
    print(sess.run(tf.reduce_max(x, 0)))
    print(sess.run(tf.reduce_max(x, 1)))
###############輸出##########
2 [2 3] [1 3] 4 [3 4] [2 4]

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM