16.Python網絡爬蟲之Scrapy框架(CrawlSpider)


引入

提問:如果想要通過爬蟲程序去爬取”糗百“全站數據新聞數據的話,有幾種實現方法?

方法一:基於Scrapy框架中的Spider的遞歸爬取進行實現(Request模塊遞歸回調parse方法)。

方法二:基於CrawlSpider的自動爬取進行實現(更加簡潔和高效)。

今日概要

  • CrawlSpider簡介
  • CrawlSpider使用
    • 基於CrawlSpider爬蟲文件的創建
    • 鏈接提取器
    • 規則解析器

今日詳情

一.簡介

  CrawlSpider其實是Spider的一個子類,除了繼承到Spider的特性和功能外,還派生除了其自己獨有的更加強大的特性和功能。其中最顯著的功能就是”LinkExtractors鏈接提取器“。Spider是所有爬蟲的基類,其設計原則只是為了爬取start_url列表中網頁,而從爬取到的網頁中提取出的url進行繼續的爬取工作使用CrawlSpider更合適。

二.使用

  1.創建scrapy工程:scrapy startproject projectName

  2.創建爬蟲文件:scrapy genspider -t crawl spiderName www.xxx.com

    --此指令對比以前的指令多了 "-t crawl",表示創建的爬蟲文件是基於CrawlSpider這個類的,而不再是Spider這個基類。

  3.觀察生成的爬蟲文件

# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class ChoutidemoSpider(CrawlSpider): name = 'choutiDemo' #allowed_domains = ['www.chouti.com'] start_urls = ['http://www.chouti.com/'] rules = ( Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True), ) def parse_item(self, response): i = {} #i['domain_id'] = response.xpath('//input[@id="sid"]/@value').extract() #i['name'] = response.xpath('//div[@id="name"]').extract() #i['description'] = response.xpath('//div[@id="description"]').extract() return i

  - 2,3行:導入CrawlSpider相關模塊

  - 7行:表示該爬蟲程序是基於CrawlSpider類的

  - 12,13,14行:表示為提取Link規則

  - 16行:解析方法

  CrawlSpider類和Spider類的最大不同是CrawlSpider多了一個rules屬性,其作用是定義”提取動作“。在rules中可以包含一個或多個Rule對象,在Rule對象中包含了LinkExtractor對象。

3.1 LinkExtractor:顧名思義,鏈接提取器。

    LinkExtractor(

         allow=r'Items/',# 滿足括號中“正則表達式”的值會被提取,如果為空,則全部匹配。

         deny=xxx,  # 滿足正則表達式的則不會被提取。

 

         restrict_xpaths=xxx, # 滿足xpath表達式的值會被提取

         restrict_css=xxx, # 滿足css表達式的值會被提取

         deny_domains=xxx, # 不會被提取的鏈接的domains。 

    )

    - 作用:提取response中符合規則的鏈接。

    

  3.2 Rule : 規則解析器。根據鏈接提取器中提取到的鏈接,根據指定規則提取解析器鏈接網頁中的內容。

     Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True)

    - 參數介紹:

      參數1:指定鏈接提取器

      參數2:指定規則解析器解析數據的規則(回調函數)

      參數3:是否將鏈接提取器繼續作用到鏈接提取器提取出的鏈接網頁中。當callback為None,參數3的默認值為true。

  3.3 rules=( ):指定不同規則解析器。一個Rule對象表示一種提取規則。

  3.4 CrawlSpider整體爬取流程:

    a)爬蟲文件首先根據起始url,獲取該url的網頁內容

    b)鏈接提取器會根據指定提取規則將步驟a中網頁內容中的鏈接進行提取

    c)規則解析器會根據指定解析規則將鏈接提取器中提取到的鏈接中的網頁內容根據指定的規則進行解析

    d)將解析數據封裝到item中,然后提交給管道進行持久化存儲

 

  4.簡單代碼實戰應用

      4.1 爬取糗事百科糗圖板塊的所有頁碼數據

# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class CrawldemoSpider(CrawlSpider): name = 'qiubai' #allowed_domains = ['www.qiushibaike.com'] start_urls = ['https://www.qiushibaike.com/pic/'] #連接提取器:會去起始url響應回來的頁面中提取指定的url link = LinkExtractor(allow=r'/pic/page/\d+\?') #s=為隨機數 link1 = LinkExtractor(allow=r'/pic/$')#爬取第一頁 #rules元組中存放的是不同的規則解析器(封裝好了某種解析規則) rules = ( #規則解析器:可以將連接提取器提取到的所有連接表示的頁面進行指定規則(回調函數)的解析 Rule(link, callback='parse_item', follow=True), Rule(link1, callback='parse_item', follow=True), ) def parse_item(self, response): print(response) 

  4.2 爬蟲文件:

# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from qiubaiBycrawl.items import QiubaibycrawlItem import re class QiubaitestSpider(CrawlSpider): name = 'qiubaiTest' #起始url start_urls = ['http://www.qiushibaike.com/'] #定義鏈接提取器,且指定其提取規則 page_link = LinkExtractor(allow=r'/8hr/page/\d+/') rules = ( #定義規則解析器,且指定解析規則通過callback回調函數 Rule(page_link, callback='parse_item', follow=True), ) #自定義規則解析器的解析規則函數 def parse_item(self, response): div_list = response.xpath('//div[@id="content-left"]/div') for div in div_list: #定義item item = QiubaibycrawlItem() #根據xpath表達式提取糗百中段子的作者 item['author'] = div.xpath('./div/a[2]/h2/text()').extract_first().strip('\n') #根據xpath表達式提取糗百中段子的內容 item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first().strip('\n') yield item #將item提交至管道

  4.2 item文件:

# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class QiubaibycrawlItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() author = scrapy.Field() #作者 content = scrapy.Field() #內容

  4.3 管道文件:

# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class QiubaibycrawlPipeline(object): def __init__(self): self.fp = None def open_spider(self,spider): print('開始爬蟲') self.fp = open('./data.txt','w') def process_item(self, item, spider): #將爬蟲文件提交的item寫入文件進行持久化存儲 self.fp.write(item['author']+':'+item['content']+'\n') return item def close_spider(self,spider): print('結束爬蟲') self.fp.close()


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM