今天折騰了一天的SPI設備的驅動加載,甚至動用了邏輯分析儀來查看spi總線的波形,主要包括兩個SPI設備,at45db321d和mcp2515,一個是串行的dataflash,一個是can總線設備芯片。前者對於我們來說非常重要,我們可以借助該設備對uboot和kernel以及根文件系統進行更新。
預備知識:設備和驅動是如何匹配的?系統的熱插拔是如何實現的?
首先一點,設備和驅動是嚴格區分的,設備是設備,驅動是驅動,設備通過struct device來定義,當然用戶也可以將該結構體封裝到自己定義的device結構體中,例如,struct platform_device,這是我們采用platform_bus_type總線的設備定義的結構體形式:
include/linux/platform_device.h文件中:
struct platform_device {
const char * name;
u32 id;
struct device dev;
u32 num_resources;
struct resource * resource;
};
只要是9260的外圍模塊,就像IIC硬件控制器,SPI硬件控制器,都被完全的定義成這種結構體的格式,這種結構體主要包含了硬件資源和名稱,硬件資源分為寄存器和IRQ兩種。platform_device通過向內核注冊struct device dev這個結構體來告訴內核加載這個設備,
方法就是 device_register(&platform_device->dev)
內核不關心你使用的是platform_device還是spi_device,內核只關心你的struct device結構體,內核通過這個struct device結構體自然能夠順藤摸瓜找到你是platform_device還是spi_device,這就是linux最引以為傲的contian_of()大法。
驅動通過struct driver這個結構體來定義,與struct device一致,你也可以用自己的結構體去封裝:例如,struct platform_driver。
include/linux/platform_device.h文件中:
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
與device一致,應用程序通過driver_register(&platform_driver->driver)向內核中注冊你當前的驅動,而內核不關心你封裝成的結構,而內核搜索的方法還是同樣的contain_of大法。
系統如何將這兩者匹配上的?而不會將iic的設備加載到spi的驅動上面?不會將這個iic設備的驅動加載到那個iic設備上,設備和驅動之間是如何聯系的?總線,這就是總線的作用!
include/linux/device.h文件中有總線類型的定義。
struct bus_type {
const char * name;
struct subsystem subsys;
struct kset drivers;
struct kset devices;
struct klist klist_devices;
struct klist klist_drivers;
struct blocking_notifier_head bus_notifier;
struct bus_attribute * bus_attrs;
struct device_attribute * dev_attrs;
struct driver_attribute * drv_attrs;
int (*match)(struct device * dev, struct device_driver * drv);
int (*uevent)(struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
int (*probe)(struct device * dev);
int (*remove)(struct device * dev);
void (*shutdown)(struct device * dev);
int (*suspend)(struct device * dev, pm_message_t state);
int (*suspend_late)(struct device * dev, pm_message_t state);
int (*resume_early)(struct device * dev);
int (*resume)(struct device * dev);
};
這個總線設備中最重要的可能是match成員,由於我們一般很少去建立一個新的總線,所以我們很少涉及總線的編程,我們就只關注我們所關注的。
總線如何將兩者關聯起來,熱插拔大家知道吧,當一個設備被通過device_register注冊到內核中時,會導致一個熱插拔事件產生,系統會遍歷該總線上的所有驅動程序,調用bus的match算法,來尋找與該設備相匹配的驅動程序,當一個驅動注冊到內核的時候,處理過程與此相似(這是我理解的阿,大家批評指正),而一般的macth算法都比較簡單,例如platform_bus的匹配算法就很簡單,就是比較platform_device和platform_driver的name成員,如果匹配成功,就加載相應的設備或者驅動!這就完成了一個連接的過程。。。
昨天其實還有一個問題可能大家沒有注意到,沒有解釋清楚,其實是有問題的,我們的at91_add_device_spi函數如下:
static struct spi_board_info ek_spi_devices[] = {
#if !defined(CONFIG_MMC_AT91)
{ /* DataFlash chip */
.modalias = "mtd_dataflash",
.chip_select = 1,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
},
#if defined(CONFIG_MTD_AT91_DATAFLASH_CARD)
{ /* DataFlash card */
.modalias = "mtd_dataflash",
.chip_select = 0,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
},
#endif
#endif
#if defined(CONFIG_SND_AT73C213) || defined(CONFIG_SND_AT73C213_MODULE)
{ /* AT73C213 DAC */
.modalias = "at73c213",
.chip_select = 0,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
},
#endif
/* spi can ,add by mrz */
#if defined(CONFIG_CAN_MCP2515_MODULE) ||defined(CONFIG_CAN_MCP2515)
//defined(CONFIG_CAN_MCP2515)
{
.modalias = "mcp2515",
.chip_select = 0,
// .controller_data = AT91_PIN_PB3,
.irq = AT91_PIN_PC6, //AT91SAM9260_ID_IRQ0,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
/*
{
.modalias = "mcp2515",
.chip_select = 1,
// .controller_data = AT91_PIN_PC5,
.irq = AT91_PIN_PC7, //AT91SAM9260_ID_IRQ1,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
*/
#elif defined(CONFIG_CAN_MCP251X)
{
.modalias = "mcp251x",
.chip_select = 0,
// .controller_data = AT91_PIN_PB3,
.irq = AT91_PIN_PC6, //AT91SAM9260_ID_IRQ0,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
{
.modalias = "mcp251x",
.chip_select = 1,
// .controller_data = AT91_PIN_PC5,
.irq = AT91_PIN_PC7, //AT91SAM9260_ID_IRQ1,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
#endif
}
void __init at91_add_device_spi(struct spi_board_info *devices, int nr_devices)
{
int i;
unsigned long cs_pin;
short enable_spi0 = 0;
short enable_spi1 = 0;
/* Choose SPI chip-selects */
/*這里加載我們定義的spi_board_info結構體,也就是兩個spi設備的信息,注意,他們這里沒有使用spi_device結構體來做,而是使用一個板級信息體來完成。*/
for (i = 0; i < nr_devices; i++) {
/*該成員定義的就是cs引腳*/
if (devices[i].controller_data)
cs_pin = (unsigned long) devices[i].controller_data;
else if (devices[i].bus_num == 0)
cs_pin = spi0_standard_cs[devices[i].chip_select];
else
cs_pin = spi1_standard_cs[devices[i].chip_select];
/*根據需要加載的設備,確定需要打開哪幾個SPI控制器,我們系統中有兩個控制器,所以我們在以模塊的方式加載驅動的時候,我們的設備必須在剛開始就被初始化!*/
if (devices[i].bus_num == 0)
enable_spi0 = 1;
else
enable_spi1 = 1;
/* enable chip-select pin */
/*將片選引腳設置為輸出*/
at91_set_gpio_output(cs_pin, 1);
/* pass chip-select pin to driver */
devices[i].controller_data = (void *) cs_pin;
}
/*到此,循環執行完畢,向內核注冊這些板級信息體*/
spi_register_board_info(devices, nr_devices);
/* Configure SPI bus(es) */
/*如果發現spi0上有設備注冊,則打開spi0*/
if (enable_spi0) {
at91_set_A_periph(AT91_PIN_PA0, 0); /* SPI0_MISO */
at91_set_A_periph(AT91_PIN_PA1, 0); /* SPI0_MOSI */
at91_set_A_periph(AT91_PIN_PA2, 0); /* SPI1_SPCK */
at91_clock_associate("spi0_clk", &at91sam9260_spi0_device.dev, "spi_clk");
platform_device_register(&at91sam9260_spi0_device);
}
/*spi0設備也是如此*/
if (enable_spi1) {
at91_set_A_periph(AT91_PIN_PB0, 0); /* SPI1_MISO */
at91_set_A_periph(AT91_PIN_PB1, 0); /* SPI1_MOSI */
at91_set_A_periph(AT91_PIN_PB2, 0); /* SPI1_SPCK */
at91_clock_associate("spi1_clk", &at91sam9260_spi1_device.dev, "spi_clk");
platform_device_register(&at91sam9260_spi1_device);
}
}
從上面這個函數我們可以看出,這個函數就完成了兩個功能:
1、向內核完成spi板級信息結構體的注冊
2、注冊了兩個platform_device:spi0與spi1,這兩個設備是spi總線控制器!
那么我們客戶端spi_device設備的注冊是如何完成的?不知道,呵呵
我今天仔細的看代碼才發現玄機所在。
內核的注釋很清晰的告訴我們,我們的spi設備是不允許熱插拔!!這是由於spi設備驅動的框架不允許,我們的spi_device設備注冊不是在板級初始化的時候完成的。
在spi控制器的驅動加載的時候,也就是platform_driver:atmel_spi驅動加載的時候,
driver/spi/atmel_spi.c文件中:
static int __init atmel_spi_probe(struct platform_device *pdev)
{
struct resource *regs;
int irq;
struct clk *clk;
int ret;
struct spi_master *master;
struct atmel_spi *as;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
clk = clk_get(&pdev->dev, "spi_clk");
if (IS_ERR(clk))
return PTR_ERR(clk);
/* setup spi core then atmel-specific driver state */
ret = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof *as);
if (!master)
goto out_free;
master->bus_num = pdev->id;
master->num_chipselect = 4;
master->setup = atmel_spi_setup;
master->transfer = atmel_spi_transfer;
master->cleanup = atmel_spi_cleanup;
platform_set_drvdata(pdev, master);
as = spi_master_get_devdata(master);
as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
&as->buffer_dma, GFP_KERNEL);
if (!as->buffer)
goto out_free;
spin_lock_init(&as->lock);
INIT_LIST_HEAD(&as->queue);
as->pdev = pdev;
as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
if (!as->regs)
goto out_free_buffer;
as->irq = irq;
as->clk = clk;
#ifdef CONFIG_ARCH_AT91
if (!cpu_is_at91rm9200())
as->new_1 = 1;
#endif
ret = request_irq(irq, atmel_spi_interrupt, 0,
pdev->dev.bus_id, master);
if (ret)
goto out_unmap_regs;
/* Initialize the hardware */
clk_enable(clk);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
spi_writel(as, CR, SPI_BIT(SPIEN));
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)/n",
(unsigned long)regs->start, irq);
/*spi注冊這個主控制器*/
ret = spi_register_master(master);
if (ret)
goto out_reset_hw;
return 0;
out_reset_hw:
spi_writel(as, CR, SPI_BIT(SWRST));
clk_disable(clk);
free_irq(irq, master);
out_unmap_regs:
iounmap(as->regs);
out_free_buffer:
dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
as->buffer_dma);
out_free:
clk_put(clk);
spi_master_put(master);
return ret;
}
而這個spi_register_master位於driver/spi/spi.c文件中,該函數調用了scan_boardinfo(master),掃描該spi master下面設備。該函數就存在於該文件下:該函數調用了spi_new_device(master, chip),這個chip就是一個spi_board_info結構體,這就是at91_add_device_spi第一個作用的用處:向內核的鏈表注冊spi_board_info結構體的用處所在。我們來看函數的調用過程:
atmel_spi_probe----->spi_register_master----->scan_boardinfo
---->spi_new_device
我們來看這個spi_new_device函數:
struct spi_device *spi_new_device(struct spi_master *master,
struct spi_board_info *chip)
{
struct spi_device *proxy;
struct device *dev = master->cdev.dev;
int status;
/* NOTE: caller did any chip->bus_num checks necessary */
if (!spi_master_get(master))
return NULL;
/*靠,終於找到你了,先暴打一頓,舒服了。。這里就分配了我們重要的spi_device結構體*/
proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
if (!proxy) {
dev_err(dev, "can't alloc dev for cs%d/n",
chip->chip_select);
goto fail;
}
/*這就是將我們的信息體中的數據轉化為spi_device識別的數據*/
proxy->master = master;
proxy->chip_select = chip->chip_select;
proxy->max_speed_hz = chip->max_speed_hz;
proxy->mode = chip->mode;
proxy->irq = chip->irq;
proxy->modalias = chip->modalias;
snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
"%s.%u", master->cdev.class_id,
chip->chip_select);
proxy->dev.parent = dev;
proxy->dev.bus = &spi_bus_type;
/*這里很重要,如果你的spi設備是dataflash的話,保存的就是你的分區表!!!所以我們要返回去修改我們的spi_boardinfo結構體*/
proxy->dev.platform_data = (void *) chip->platform_data;
/*片選信號*/
proxy->controller_data = chip->controller_data;
proxy->controller_state = NULL;
proxy->dev.release = spidev_release;
/* drivers may modify this default i/o setup */
status = master->setup(proxy);
if (status < 0) {
dev_dbg(dev, "can't %s %s, status %d/n",
"setup", proxy->dev.bus_id, status);
goto fail;
}
/* driver core catches callers that misbehave by defining
* devices that already exist.
*/
/*看到這句話,大家放心了吧,大家也就知道怎么找到spi_driver驅動的。。。*/
status = device_register(&proxy->dev);
if (status < 0) {
dev_dbg(dev, "can't %s %s, status %d/n",
"add", proxy->dev.bus_id, status);
goto fail;
}
dev_dbg(dev, "registered child %s/n", proxy->dev.bus_id);
return proxy;
fail:
spi_master_put(master);
kfree(proxy);
return NULL;
}
下面我們要解決最后的一個問題,dataflash的分區的問題,看了這么多,大家應該知道怎么解決了吧!
我們看mtd_dataflash.c文件中驅動加載函數調用了下面這個函數來添加flash設備。。
static int __devinit
add_dataflash(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset)
{
struct dataflash *priv;
struct mtd_info *device;
/*這里就告訴我們要在spi_boardinfo結構體的platform_data成員指向一個我們需要的flash_platform_data數據!*/
struct flash_platform_data *pdata = spi->dev.platform_data;
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
return -ENOMEM;
init_MUTEX(&priv->lock);
priv->spi = spi;
priv->page_size = pagesize;
priv->page_offset = pageoffset;
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi->chip_select,
name);
device = &priv->mtd;
device->name = (pdata && pdata->name) ? pdata->name : priv->name;
device->size = nr_pages * pagesize;
device->erasesize = pagesize;
device->writesize = pagesize;
device->owner = THIS_MODULE;
device->type = MTD_DATAFLASH;
device->flags = MTD_WRITEABLE;
device->erase = dataflash_erase;
device->read = dataflash_read;
device->write = dataflash_write;
device->priv = priv;
dev_info(&spi->dev, "%s (%d KBytes)/n", name, device->size/1024);
dev_set_drvdata(&spi->dev, priv);
if (mtd_has_partitions()) {
struct mtd_partition *parts;
int nr_parts = 0;
/*我們這里沒有定義該宏,所以不會在命令行傳遞分區表*/
#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
#endif
if (nr_parts <= 0 && pdata && pdata->parts) {
parts = pdata->parts;
nr_parts = pdata->nr_parts;
}
if (nr_parts > 0) {
priv->partitioned = 1;
return add_mtd_partitions(device, parts, nr_parts);
}
} else if (pdata && pdata->nr_parts)
dev_warn(&spi->dev, "ignoring %d default partitions on %s/n",
pdata->nr_parts, device->name);
return add_mtd_device(device) == 1 ? -ENODEV : 0;
}
所以我們需要修改這個文件:
arch/arm/mach-at91/board-sam9260ek.c文件:
添加如下:
#if !defined(CONFIG_MMC_AT91)
#define SIZE_1PAGE 528
#define SIZE_1M (unsigned long)(1024*1024)
static struct mtd_partition ek_dataflash_partition[] = {
{
.name = "U-boot ENV",
.offset = 0,
.size = 64*SIZE_1PAGE,
},
{
.name = "U-BOOT",
.offset = 64*SIZE_1PAGE,
.size = 400*SIZE_1PAGE,
},
{
.name ="Kernel",
.offset=464*SIZE_1PAGE,
.size = 4000*SIZE_1PAGE,
},
{
.name ="Root fs",
.offset=4464*SIZE_1PAGE,
.size = (8192-4464)*SIZE_1PAGE,
},
};
struct flash_platform_data dataflash_atmel={
.name="AT45DB321",
.parts=ek_dataflash_partition,
.nr_parts=ARRAY_SIZE(ek_dataflash_partition),
};
#endif
修改spi_boardinfo結構體:
static struct spi_board_info ek_spi_devices[] = {
#if !defined(CONFIG_MMC_AT91)
{ /* DataFlash chip */
.modalias = "mtd_dataflash",
.chip_select = 1,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
.platform_data=&dataflash_atmel,
},
添加platform_data結構成員。
這里我們建立mtd_partition結構體要注意,由於dataflash是以528字節每頁的,其實,at45db321x芯片可以設置為512字節每頁,這個操作是不可以逆轉的,那個位是一個otp位,用過的人就應該知道,但是出廠的時候默認的528字節每頁。
如果我們不是以528個字節為單位的話,內核將出警告,強制將分區加載為readonly格式。
到此,分區加載成功,dmesg輸出如下信息:
<6>mtd_dataflash spi0.1: AT45DB321x (4224 KBytes)
<5>Creating 4 MTD partitions on "AT45DB321":
<5>0x00000000-0x00008400 : "U-boot ENV"
<5>0x00008400-0x0003bd00 : "U-BOOT"
<5>0x0003bd00-0x0023f700 : "Kernel"
<5>0x0023f700-0x00420000 : "Root fs"
linux簡直太偉大了,使用得越多,就越能體會到其思想的偉大!靈活!
那么這兩種設備驅動中最重要的類型在linux中如何表現出來,那我們就有必要介紹一下從2.6開始實現的sys文件系統了,
/sys/bus $ cat /etc/fstab
proc /proc proc defaults 0 0
devpts /dev/pts devpts defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
sysfs /sys sysfs defaults 0 0
/dev/mtdblock2 /mnt/flash2 yaffs defaults 0 0
加載這個文件系統對於我們分析設備模型是非常有好處的。
sys文件夾下一般有如下的目錄:
/sys $ ls -al
drwxr-xr-x 10 root root 0 Jan 1 1970 .
drwxrwxrwx 11 1000 tao 4096 May 22 06:56 ..
drwxr-xr-x 7 root root 0 Oct 27 14:09 block
drwxr-xr-x 8 root root 0 Jan 1 1970 bus
drwxr-xr-x 21 root root 0 Jan 1 1970 class
drwxr-xr-x 4 root root 0 Jan 1 1970 devices
drwxr-xr-x 2 root root 0 Jan 1 1970 firmware
drwxr-xr-x 2 root root 0 Jan 1 1970 fs
drwxr-xr-x 2 root root 0 Jan 1 1970 kernel
drwxr-xr-x 22 root root 0 Oct 27 14:10 module
block是由於歷史原因形成的block設備的文件夾。我們關心的是bus文件夾。
我們以spi設備為例:spi部分要包括兩種設備,一種是platform_device,一種是spi_device。
在arch/arm/mach-at91/at91sam9260_device.c文件中,定義的SPI硬件控制模塊設備,這我們不需要關心。
還有一種是spi_device,定義在arch/arm/mach-at91/board-sam9260ek.c文件中,這就是我們的dataflash和mcp2515設備,
所以如何設備加載成功的話,在bus下面的每個目錄里面,都存在devices和drivers兩個文件夾,分別對應設備和文件。
/sys/bus/platform/devices $ ls -al
drwxr-xr-x 2 root root 0 Oct 27 16:01 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_i2c -> ../../../devices/platform/at91_i2c
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_nand -> ../../../devices/platform/at91_nand
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_ohci -> ../../../devices/platform/at91_ohci
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_spi.0 -> ../../../devices/platform/atmel_spi.0
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_spi.1 -> ../../../devices/platform/atmel_spi.1
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.0 -> ../../../devices/platform/atmel_usart.0
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.1 -> ../../../devices/platform/atmel_usart.1
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.2 -> ../../../devices/platform/atmel_usart.2
lrwxrwxrwx 1 root root 0 Oct 27 16:01 macb -> ../../../devices/platform/macb
驅動
/sys/bus/platform/drivers/atmel_spi $ ls -al
drwxr-xr-x 2 root root 0 Jan 1 1970 .
drwxr-xr-x 8 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 16:10 atmel_spi.0 -> ../../../../devices/platform/atmel_spi.0
lrwxrwxrwx 1 root root 0 Oct 27 16:10 atmel_spi.1 -> ../../../../devices/platform/atmel_spi.1
--w------- 1 root root 4096 Oct 27 16:10 bind
--w------- 1 root root 4096 Oct 27 16:10 unbind
如果出現上面的這個情況,說明你的設備(兩路spi總線)和驅動都加載成功了,如果你的devices下面沒有spi.0設備和spi.1設備的話,說明
board-sam9260ek.c文件中的這個函數出錯:
static void __init ek_board_init(void)
{
/* Serial */
at91_add_device_serial();
/* USB Host */
at91_add_device_usbh(&ek_usbh_data);
/* USB Device */
at91_add_device_udc(&ek_udc_data);
/* SPI */
at91_add_device_spi(ek_spi_devices, ARRAY_SIZE(ek_spi_devices));
/* NAND */
at91_add_device_nand(&ek_nand_data);
/* Ethernet */
at91_add_device_eth(&ek_macb_data);
/* MMC */
at91_add_device_mmc(0, &ek_mmc_data);
/* I2C */
at91_add_device_i2c();
}
這里是設備注冊的地方,我們還應該在下面這個目錄下看到這兩個文件。
/sys/bus/spi/devices $ ls -al
drwxr-xr-x 2 root root 0 Oct 27 14:09 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 14:09 spi0.1 -> ../../../devices/platform/atmel_spi.0/spi0.1
lrwxrwxrwx 1 root root 0 Oct 27 14:09 spi1.0 -> ../../../devices/platform/atmel_spi.1/spi1.0
這兩個鏈接說明我們的兩個spi設備注冊都被接受了,剩下來就是驅動的問題。有人看不懂這個sys文件系統的層次關系,其實這里比較好說明,就是spi0.1是atmel_spi.0設備的子設備嘛,很好理解的。
驅動:
platform_driver驅動:
/sys/bus/platform/drivers $ ls -al
drwxr-xr-x 8 root root 0 Jan 1 1970 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_i2c
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_nand
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_ohci
drwxr-xr-x 2 root root 0 Oct 27 16:10 atmel_spi
drwxr-xr-x 2 root root 0 Jan 1 1970 atmel_usart
drwxr-xr-x 2 root root 0 Jan 1 1970 macb
我們可以看到這個驅動只有一個atmel_spi,這個驅動是在哪加載的?
driver/spi/atmel_spi.c文件加載的。
spi_driver驅動:
/sys/bus/spi/drivers $ ls -al
drwxr-xr-x 4 root root 0 Oct 27 14:10 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
drwxr-xr-x 2 root root 0 Oct 27 14:10 mcp2515
drwxr-xr-x 2 root root 0 Oct 27 14:09 mtd_dataflash
這是我們加載的兩個驅動,說明驅動也加載正常了。
下面我們來說說我們遇到的問題吧。
在設備和驅動都加載正常之后,出現與dataflash設備通信不上的情況,驅動加載的時候,讀取芯片的狀態字讀出是0xff,說明工作不正常,動用邏輯分析儀監控spi總線的通信,意外的發現,sck信號和cs信號正常,但是mosi無信號輸出,開始覺得可能是spi總線適配器有問題,后來仔細觀察原理圖之后,發現dataflash和mmc/sd是使用同樣的io口的,即pa0,pa1,pa2,而我的內核配置中打開了對mmc的支持,所以導致mosi不正常,所以可能9260的mmc與dataflash不能同時使用,但9263的可以。
解決辦法:make menuconfig
Device Drivers--->MMC/SD card support,取消其支持,問題解決!
文章出處:飛諾網(www.firnow.com):http://dev.firnow.com/course/6_system/linux/Linuxjs/200868/123621.html