- 使用Keras進行自動驗證
- 使用Keras進行手工驗證
- 使用Keras進行K折交叉驗證
1 分割數據
數據量大和網絡復雜會造成訓練時間很長,所以需要將數據分成訓練、測試或驗證數據集。Keras提供兩種辦法:
- 自動驗證
- 手工驗證
Keras可以將數據自動分出一部分,每次訓練后進行驗證。在訓練時用validation_split參數可以指定驗證數據的比例,一般是總數據的20%或者33%。
1 下面的代碼加入了自動驗證:
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # MLP with automatic validation set from keras.models import Sequential from keras.layers import Dense import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # create model model = Sequential() model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) model.add(Dense(8, kernel_initializer='uniform', activation='relu')) model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10)
訓練時,每輪會顯示訓練和測試數據的數據:

2 手工驗證
Keras也可以手工進行驗證。我們定義一個train_test_split函數,將數據分成2:1的測試和驗證數據集。在調用fit()方法時需要加入validation_data參數作為驗證數據,數組的項目分別是輸入和輸出數據。
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # MLP with manual validation set from keras.models import Sequential from keras.layers import Dense # from sklearn.cross_validation import train_test_split # 由於cross_validation將要被移除This module will be removed in 0.20.所以使用下面的model_selection來導入train_test_split from sklearn.model_selection import train_test_split import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter="\t") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # split into 67% for train and 33% for test X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed) # create model model = Sequential() model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) model.add(Dense(8, kernel_initializer='uniform', activation='relu')) model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=150, batch_size=10)
和自動化驗證一樣,每輪訓練后,Keras會輸出訓練和驗證結果:

3 手工K折交叉驗證
機器學習的金科玉律是K折驗證,以驗證模型對未來數據的預測能力。K折驗證的方法是:將數據分成K組,留下1組驗證,其他數據用作訓練,直到每種分發的性能一致。
深度學習一般不用交叉驗證,因為對算力要求太高。例如,K折的次數一般是5或者10折:每組都需要訓練並驗證,訓練時間成倍上升。然而,如果數據量小,交叉驗證的效果更好,誤差更小。
scikit-learn有StratifiedKFold類,我們用它把數據分成10組。抽樣方法是分層抽樣,盡可能保證每組數據量一致。然后我們在每組上訓練模型,使用verbose=0參數關閉每輪的輸出。
訓練后,Keras會輸出模型的性能,並存儲模型。最終,Keras輸出性能的平均值和標准差,為性能估算提供更准確的估計:
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # MLP for Pima Indians Dataset with 10-fold cross validation from keras.models import Sequential from keras.layers import Dense from sklearn.cross_validation import StratifiedKFold #from sklearn.model_selection import StratifiedKFold import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter="\t") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # define 10-fold cross validation test harness kfold = StratifiedKFold(y=Y,n_folds=10, shuffle=True, random_state=seed) cvscores = [] for i, (train, test) in enumerate(kfold): # create model model = Sequential() model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) model.add(Dense(8, kernel_initializer='uniform', activation='relu')) model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X[train], Y[train], epochs=150, batch_size=10, verbose=0) # evaluate the model scores = model.evaluate(X[test], Y[test], verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) cvscores.append(scores[1] * 100) print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores)))
輸出是:

