1、均值濾波
均值濾波,是最簡單的一種濾波操作,輸出圖像的每一個像素是核窗口內輸入圖像對應像素的像素的平均值( 所有像素加權系數相等),其實說白了它就是歸一化后的方框濾波。
下面開始講均值濾波的內容吧。
⑴均值濾波的理論簡析
均值濾波是典型的線性濾波算法,主要方法為鄰域平均法,即用一片圖像區域的各個像素的均值來代替原圖像中的各個像素值。一般需要在圖像上對目標像素給出一個模板(內核),該模板包括了其周圍的臨近像素(比如以目標像素為中心的周圍8(3x3-1)個像素,構成一個濾波模板,即去掉目標像素本身)。再用模板中的全體像素的平均值來代替原來像素值。即對待處理的當前像素點(x,y),選擇一個模板,該模板由其近鄰的若干像素組成,求模板中所有像素的均值,再把該均值賦予當前像素點(x,y),作為處理后圖像在該點上的灰度個g(x,y),即個g(x,y)=1/m ∑f(x,y) ,其中m為該模板中包含當前像素在內的像素總個數。
⑵均值濾波的缺陷
均值濾波本身存在着固有的缺陷,即它不能很好地保護圖像細節,在圖像去噪的同時也破壞了圖像的細節部分,從而使圖像變得模糊,不能很好地去除噪聲點。
2、高斯濾波
高斯濾波是一種線性平滑濾波,適用於消除高斯噪聲,廣泛應用於圖像處理的減噪過程。通俗的講,高斯濾波就是對整幅圖像進行加權平均的過程,每一個像素點的值,都由其本身和鄰域內的其他像素值經過加權平均后得到。高斯濾波的具體操作是:用一個模板(或稱卷積、掩模)掃描圖像中的每一個像素,用模板確定的鄰域內像素的加權平均灰度值去替代模板中心像素點的值。
大家常常說高斯濾波最有用的濾波操作,雖然它用起來,效率往往不是最高的。
高斯模糊技術生成的圖像,其視覺效果就像是經過一個半透明屏幕在觀察圖像,這與鏡頭焦外成像效果散景以及普通照明陰影中的效果都明顯不同。高斯平滑也用於計算機視覺算法中的預先處理階段,以增強圖像在不同比例大小下的圖像效果(參見尺度空間表示以及尺度空間實現)。從數學的角度來看,圖像的高斯模糊過程就是圖像與正態分布做卷積。由於正態分布又叫作高斯分布,所以這項技術就叫作高斯模糊。
圖像與圓形方框模糊做卷積將會生成更加精確的焦外成像效果。由於高斯函數的傅立葉變換是另外一個高斯函數,所以高斯模糊對於圖像來說就是一個低通濾波操作。
高斯濾波器是一類根據高斯函數的形狀來選擇權值的線性平滑濾波器。高斯平滑濾波器對於抑制服從正態分布的噪聲非常有效。一維零均值高斯函數為:

其中,高斯分布參數Sigma決定了高斯函數的寬度。對於圖像處理來說,常用二維零均值離散高斯函數作平滑濾波器。
二維高斯函數為:

3、中值濾波
中值濾波(Median filter)是一種典型的非線性濾波技術,基本思想是用像素點鄰域灰度值的中值來代替該像素點的灰度值,該方法在去除脈沖噪聲、椒鹽噪聲的同時又能保留圖像邊緣細節,.
中值濾波是基於排序統計理論的一種能有效抑制噪聲的非線性信號處理技術,其基本原理是把數字圖像或數字序列中一點的值用該點的一個鄰域中各點值的中值代替,讓周圍的像素值接近的真實值,從而消除孤立的噪聲點,對於斑點噪聲(speckle noise)和椒鹽噪聲(salt-and-pepper noise)來說尤其有用,因為它不依賴於鄰域內那些與典型值差別很大的值。中值濾波器在處理連續圖像窗函數時與線性濾波器的工作方式類似,但濾波過程卻不再是加權運算。
中值濾波在一定的條件下可以克服常見線性濾波器如最小均方濾波、方框濾波器、均值濾波等帶來的圖像細節模糊,而且對濾除脈沖干擾及圖像掃描噪聲非常有效,也常用於保護邊緣信息, 保存邊緣的特性使它在不希望出現邊緣模糊的場合也很有用,是非常經典的平滑噪聲處理方法。
⑴中值濾波與均值濾波器比較
中值濾波器與均值濾波器比較的優勢:
在均值濾波器中,由於噪聲成分被放入平均計算中,所以輸出受到了噪聲的影響,但是在中值濾波器中,由於噪聲成分很難選上,所以幾乎不會影響到輸出。因此同樣用3x3區域進行處理,中值濾波消除的噪聲能力更勝一籌。中值濾波無論是在消除噪聲還是保存邊緣方面都是一個不錯的方法。
中值濾波器與均值濾波器比較的劣勢:
中值濾波花費的時間是均值濾波的5倍以上。
⑵顧名思義,中值濾波選擇每個像素的鄰域像素中的中值作為輸出,或者說中值濾波將每一像素點的灰度值設置為該點某鄰域窗口內的所有像素點灰度值的中值。
例如,取3 x 3的函數窗,計算以點[i,j]為中心的函數窗像素中值步驟如下:
(1) 按強度值大小排列像素點.
(2) 選擇排序像素集的中間值作為點[i,j]的新值.
這一過程如圖下圖所示.

一般采用奇數點的鄰域來計算中值,但如果像素點數為偶數
時,中值就取排序像素中間兩點的平均值.采用大小不同鄰域的中值濾波器的結果如圖。

中值濾波在一定條件下,可以克服線性濾波器(如均值濾波等)所帶來的圖像細節模糊,而且對濾除脈沖干擾即圖像掃描噪聲最為有效。在實際運算過程中並不需要圖像的統計特性,也給計算帶來不少方便。但是對一些細節多,特別是線、尖頂等細節多的圖像不宜采用中值濾波。
4、雙邊濾波
雙邊濾波(Bilateral filter)是一種非線性的濾波方法,是結合圖像的空間鄰近度和像素值相似度的一種折衷處理,同時考慮空域信息和灰度相似性,達到保邊去噪的目的。具有簡單、非迭代、局部的特點。
雙邊濾波器的好處是可以做邊緣保存(edge preserving),一般過去用的維納濾波或者高斯濾波去降噪,都會較明顯地模糊邊緣,對於高頻細節的保護效果並不明顯。雙邊濾波器顧名思義比高斯濾波多了一個高斯方差sigma-d,它是基於空間分布的高斯濾波函數,所以在邊緣附近,離的較遠的像素不會太多影響到邊緣上的像素值,這樣就保證了邊緣附近像素值的保存。但是由於保存了過多的高頻信息,對於彩色圖像里的高頻噪聲,雙邊濾波器不能夠干凈的濾掉,只能夠對於低頻信息進行較好的濾波。
在雙邊濾波器中,輸出像素的值依賴於鄰域像素值的加權值組合:

而加權系數w(i,j,k,l)取決於定義域核和值域核的乘積。
其中定義域核表示如下(如圖):

定義域濾波對應圖示:

值域核表示為:

值域濾波:

兩者相乘后,就會產生依賴於數據的雙邊濾波權重函數:

