首先當然要配置r語言環境變量什么的
D:\R-3.5.1\bin\x64;
D:\R-3.5.1\bin\x64\R.dll;
D:\R-3.5.1;
D:\ProgramData\Anaconda3\Lib\site-packages\rpy2;
本來用python也可以實現關聯規則,雖然沒包,但是可視化挺麻煩的

#!/usr/bin/env python3 # -*- coding: utf-8 -*- from pandas import read_csv def loadDataSet(): dataset = read_csv("F:/goverment/Aprior/No Number.csv") data = dataset.values[:,:] Data=[] for line in data: ls=[] for i in line: ls.append(i) Data.append(ls) #print(Data) return Data ''' return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]''' def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() '''??????????????????????????????????????????????????????''' # 映射為frozenset唯一性的,可使用其構造字典 return list(map(frozenset, C1)) # 從候選K項集到頻繁K項集(支持度計算) def scanD(D, Ck, minSupport): ssCnt = {} for tid in D: for can in Ck: if can.issubset(tid): if not can in ssCnt: ssCnt[can] = 1 else: ssCnt[can] += 1 numItems = float(len(D)) retList = [] supportData = {} for key in ssCnt: support = ssCnt[key] / numItems if support >= minSupport: retList.insert(0, key) supportData[key] = support return retList, supportData def calSupport(D, Ck, min_support): dict_sup = {} for i in D: for j in Ck: if j.issubset(i): if not j in dict_sup: dict_sup[j] = 1 else: dict_sup[j] += 1 sumCount = float(len(D)) supportData = {} relist = [] for i in dict_sup: temp_sup = dict_sup[i] / sumCount if temp_sup >= min_support: relist.append(i) supportData[i] = temp_sup # 此處可設置返回全部的支持度數據(或者頻繁項集的支持度數據) return relist, supportData # 改進剪枝算法 def aprioriGen(Lk, k): # 創建候選K項集 ##LK為頻繁K項集 retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i + 1, lenLk): L1 = list(Lk[i])[:k - 2] L2 = list(Lk[j])[:k - 2] L1.sort() L2.sort() if L1 == L2: # 前k-1項相等,則可相乘,這樣可防止重復項出現 # 進行剪枝(a1為k項集中的一個元素,b為它的所有k-1項子集) a = Lk[i] | Lk[j] # a為frozenset()集合 a1 = list(a) b = [] # 遍歷取出每一個元素,轉換為set,依次從a1中剔除該元素,並加入到b中 for q in range(len(a1)): t = [a1[q]] tt = frozenset(set(a1) - set(t)) b.append(tt) t = 0 for w in b: # 當b(即所有k-1項子集)都是Lk(頻繁的)的子集,則保留,否則刪除。 if w in Lk: t += 1 if t == len(b): retList.append(b[0] | b[1]) return retList def apriori(dataSet, minSupport=0.2): C1 = createC1(dataSet) D = list(map(set, dataSet)) # 使用list()轉換為列表 L1, supportData = calSupport(D, C1, minSupport) L = [L1] # 加列表框,使得1項集為一個單獨元素 k = 2 while (len(L[k - 2]) > 0): Ck = aprioriGen(L[k - 2], k) Lk, supK = scanD(D, Ck, minSupport) # scan DB to get Lk supportData.update(supK) L.append(Lk) # L最后一個值為空集 k += 1 del L[-1] # 刪除最后一個空集 return L, supportData # L為頻繁項集,為一個列表,1,2,3項集分別為一個元素。 # 生成集合的所有子集 def getSubset(fromList, toList): for i in range(len(fromList)): t = [fromList[i]] tt = frozenset(set(fromList) - set(t)) if not tt in toList: toList.append(tt) tt = list(tt) if len(tt) > 1: getSubset(tt, toList) #def calcConf(freqSet, H, supportData, ruleList, minConf=0.7): def calcConf(freqSet, H, supportData, Rule, minConf=0.7): for conseq in H: conf = supportData[freqSet] / supportData[freqSet - conseq] # 計算置信度 # 提升度lift計算lift = p(a & b) / p(a)*p(b) lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq]) ls=[] if conf >= minConf and lift > 3: for i in freqSet - conseq: #print(i," ",end="") ls.append(i) ls.append(" ") #print('-->',end="") ls.append('-->') for i in conseq: #print(i," ",end="") ls.append(i) ls.append(" ") #print('支持度:', round(supportData[freqSet - conseq]*100, 1), "%",' 置信度:', round(conf*100,1),"%",' lift值為', round(lift, 2)) #ls.append(' 支持度:') #ls.append(round(supportData[freqSet - conseq]*100, 1)) #ls.append("% ") #ls.append(' 置信度:') ls.append( round(conf*100,1)) ls.append("% ") #ls.append( round(lift, 2)) #ls.append(round(lift, 2)) #ruleList.append((freqSet - conseq, conseq, conf)) if ls!=[]: #print(len(ls)) Rule.append(ls) # ============================================================================= # for line in Rule: # for i in line: # print(i,end="") # print("") # ============================================================================= return Rule # ============================================================================= # print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet - conseq], 2), '置信度:', round(conf,3), # 'lift值為:', round(lift, 2)) # ============================================================================= # 生成規則 def gen_rule(L, supportData, minConf=0.7): bigRuleList = [] for i in range(1, len(L)): # 從二項集開始計算 for freqSet in L[i]: # freqSet為所有的k項集 # 求該三項集的所有非空子集,1項集,2項集,直到k-1項集,用H1表示,為list類型,里面為frozenset類型, H1 = list(freqSet) all_subset = [] getSubset(H1, all_subset) # 生成所有的子集 calcConf(freqSet, all_subset, supportData, bigRuleList, minConf) return bigRuleList if __name__ == '__main__': dataSet = loadDataSet() #print(dataSet) L, supportData = apriori(dataSet, minSupport=0.05) rule = gen_rule(L, supportData, minConf=0.5) for i in rule: for j in i: if j==',': continue else: print(j,end="") print("") ''' 具體公式: P(B|A)/P(B) 稱為A條件對於B事件的提升度,如果該值=1,說明兩個條件沒有任何關聯, 如果<1,說明A條件(或者說A事件的發生)與B事件是相斥的, 一般在數據挖掘中當提升度大於3時,我們才承認挖掘出的關聯規則是有價值的。 '''
之后還是用r吧,要下載rpy2,見https://www.cnblogs.com/caiyishuai/p/9520214.html
還要下載兩個R的包
import rpy2.robjects as robjects
b=(''' install.packages("arules") install.packages("arulesViz") ''') robjects.r(b)
然后就是主代碼了
import rpy2.robjects as robjects a=('''Encoding("UTF-8") setwd("F:/goverment/Aprior") all_data<-read.csv("F:/goverment/Aprior/NewData.csv",header = T,#將數據轉化為因子型 colClasses=c("factor","factor","factor","factor","factor","factor","factor","factor","factor","factor","factor","factor")) library(arules) rule=apriori(data=all_data[,c(1,4,5,6,7,8,9,10,12)], parameter = list(support=0.05,confidence=0.7,minlen=2,maxlen=10)) ''') robjects.r(a) robjects.r(''' rule.subset<-subset(rule,lift>1) #inspect(rule.subset) rules.sorted<-sort(rule.subset,by="lift") subset.matrix<-is.subset(rules.sorted,rules.sorted) lower.tri(subset.matrix,diag=T) subset.matrix[lower.tri(subset.matrix,diag = T)]<-NA redundant<-colSums(subset.matrix,na.rm = T)>=1 #這五條就是去冗余(感興趣可以去網上搜),我雖然這里寫了,但我沒有去冗余,我的去了以后一個規則都沒了 which(redundant) rules.pruned<-rules.sorted[!redundant] #inspect(rules.pruned) #輸出去冗余后的規則 ''') c=(''' library(arulesViz)#掉包 jpeg(file="plot1.jpg") #inspect(rule.subset) plt<-plot(rule.subset,shading = "lift")#畫散點圖 dev.off() subrules<-head(sort(rule.subset,by="lift"),50) #jpeg(file="plot2.jpg") plot(subrules,method = "graph")#畫圖 #dev.off() rule.sorted <- sort(rule.subset, decreasing=TRUE, by="lift") #按提升度排序 rules.write<-as(rule.sorted,"data.frame") #將規則轉化為data類型 write.csv(rules.write,"F:/goverment/Aprior/NewRules.csv",fileEncoding="UTF-8") ''') robjects.r(c) #取出保存的規則,放到一個列表中 from pandas import read_csv data_set = read_csv("F:/goverment/Aprior/NewRules.csv") data = data_set.values[:, :] rul = [] for line in data: ls = [] for j in line: try : j=float(j) if j>0 and j<=1: j=str(round(j*100,2))+"%" ls.append(j) else: ls.append(round(j,2)) except: ls.append(j) rul.append(ls) for line in rul: print(line)