一、 ArrayList底層實現原理
對比
和Vector不同,ArrayList中的操作不是線程安全的!所以,建議在單線程中才使用ArrayList,而在多線程中可以選擇Vector或者CopyOnWriteArrayList。
總結:
(01) ArrayList 實際上是通過一個數組去保存數據的。當我們構造ArrayList時;若使用默認構造函數,則ArrayList的默認容量大小是10。
(02) 當ArrayList容量不足以容納全部元素時,ArrayList會重新設置容量:新的容量=“(原始容量x3)/2 + 1”。
(03) ArrayList的克隆函數,即是將全部元素克隆到一個數組中。
(04) ArrayList實現java.io.Serializable的方式。當寫入到輸出流時,先寫入“容量”,再依次寫入“每一個元素”;當讀出輸入流時,先讀取“容量”,再依次讀取“每一個元素”。
LinkedList簡介
LinkedList 是一個繼承於AbstractSequentialList的雙向鏈表。它也可以被當作堆棧、隊列或雙端隊列進行操作。
LinkedList 實現 List 接口,能對它進行隊列操作。
LinkedList 實現 Deque 接口,即能將LinkedList當作雙端隊列使用。
LinkedList 實現了Cloneable接口,即覆蓋了函數clone(),能克隆。
LinkedList 實現java.io.Serializable接口,這意味着LinkedList支持序列化,能通過序列化去傳輸。
LinkedList 是非同步的。
LinkedList的本質是雙向鏈表。
(01) LinkedList繼承於AbstractSequentialList,並且實現了Dequeue接口。
(02) LinkedList包含兩個重要的成員:header 和 size。
header是雙向鏈表的表頭,它是雙向鏈表節點所對應的類Entry的實例。Entry中包含成員變量: previous, next, element。其中,previous是該節點的上一個節點,next是該節點的下一個節點,element是該節點所包含的值。
size是雙向鏈表中節點的個數。
在閱讀源碼之前,我們先對LinkedList的整體實現進行大致說明:
LinkedList實際上是通過雙向鏈表去實現的。既然是雙向鏈表,那么它的順序訪問會非常高效,而隨機訪問效率比較低。
既然LinkedList是通過雙向鏈表的,但是它也實現了List接口{也就是說,它實現了get(int location)、remove(int location)等“根據索引值來獲取、刪除節點的函數”}。LinkedList是如何實現List的這些接口的,如何將“雙向鏈表和索引值聯系起來的”?
實際原理非常簡單,它就是通過一個計數索引值來實現的。例如,當我們調用get(int location)時,首先會比較“location”和“雙向鏈表長度的1/2”;若前者大,則從鏈表頭開始往后查找,直到location位置;否則,從鏈表末尾開始先前查找,直到location位置。
這就是“雙線鏈表和索引值聯系起來”的方法。
總結:
(01) LinkedList 實際上是通過雙向鏈表去實現的。
它包含一個非常重要的內部類:Entry。Entry是雙向鏈表節點所對應的數據結構,它包括的屬性有:當前節點所包含的值,上一個節點,下一個節點。
(02) 從LinkedList的實現方式中可以發現,它不存在LinkedList容量不足的問題。
(03) LinkedList的克隆函數,即是將全部元素克隆到一個新的LinkedList對象中。
(04) LinkedList實現java.io.Serializable。當寫入到輸出流時,先寫入“容量”,再依次寫入“每一個節點保護的值”;當讀出輸入流時,先讀取“容量”,再依次讀取“每一個元素”。
(05) 由於LinkedList實現了Deque,而Deque接口定義了在雙端隊列兩端訪問元素的方法。提供插入、移除和檢查元素的方法。每種方法都存在兩種形式:一種形式在操作失敗時拋出異常,另一種形式返回一個特殊值(null 或 false,具體取決於操作)。
總結起來如下表格:
第一個元素(頭部) 最后一個元素(尾部) 拋出異常 特殊值 拋出異常 特殊值 插入 addFirst(e) offerFirst(e) addLast(e) offerLast(e) 移除 removeFirst() pollFirst() removeLast() pollLast() 檢查 getFirst() peekFirst() getLast() peekLast()
Vector簡介
和ArrayList不同,Vector中的操作是線程安全的
總結:
(01) Vector實際上是通過一個數組去保存數據的。當我們構造Vecotr時;若使用默認構造函數,則Vector的默認容量大小是10。
(02) 當Vector容量不足以容納全部元素時,Vector的容量會增加。若容量增加系數 >0,則將容量的值增加“容量增加系數”;否則,將容量大小增加一倍。
(03) Vector的克隆函數,即是將全部元素克隆到一個數組中。
學完Vector了之后,接下來我們開始學習Stack。Stack很簡單,它繼承於Vector。
Stack是棧。它的特性是:先進后出(FILO, First In Last Out)。
java工具包中的Stack是繼承於Vector(矢量隊列)的,由於Vector是通過數組實現的,這就意味着,Stack也是通過數組實現的,而非鏈表。當然,我們也可以將LinkedList當作棧來使用.
總結:
(01) Stack實際上也是通過數組去實現的。
執行push時(即,將元素推入棧中),是通過將元素追加的數組的末尾中。
執行peek時(即,取出棧頂元素,不執行刪除),是返回數組末尾的元素。
執行pop時(即,取出棧頂元素,並將該元素從棧中刪除),是取出數組末尾的元素,然后將該元素從數組中刪除。
(02) Stack繼承於Vector,意味着Vector擁有的屬性和功能,Stack都擁有。
List總結(LinkedList, ArrayList等使用場景和性能分析)
第1部分 List概括
先回顧一下List的框架圖
(01) List 是一個接口,它繼承於Collection的接口。它代表着有序的隊列。
(02) AbstractList 是一個抽象類,它繼承於AbstractCollection。AbstractList實現List接口中除size()、get(int location)之外的函數。
(03) AbstractSequentialList 是一個抽象類,它繼承於AbstractList。AbstractSequentialList 實現了“鏈表中,根據index索引值操作鏈表的全部函數”。
(04) ArrayList, LinkedList, Vector, Stack是List的4個實現類。
ArrayList 是一個數組隊列,相當於動態數組。它由數組實現,隨機訪問效率高,隨機插入、隨機刪除效率低。
LinkedList 是一個雙向鏈表。它也可以被當作堆棧、隊列或雙端隊列進行操作。LinkedList隨機訪問效率低,但隨機插入、隨機刪除效率低。
Vector 是矢量隊列,和ArrayList一樣,它也是一個動態數組,由數組實現。但是ArrayList是非線程安全的,而Vector是線程安全的。
Stack 是棧,它繼承於Vector。它的特性是:先進后出(FILO, First In Last Out)。
第2部分 List使用場景
學東西的最終目的是為了能夠理解、使用它。下面先概括的說明一下各個List的使用場景,后面再分析原因。
如果涉及到“棧”、“隊列”、“鏈表”等操作,應該考慮用List,具體的選擇哪個List,根據下面的標准來取舍。
(01) 對於需要快速插入,刪除元素,應該使用LinkedList。
(02) 對於需要快速隨機訪問元素,應該使用ArrayList。
(03) 對於“單線程環境” 或者 “多線程環境,但List僅僅只會被單個線程操作”,此時應該使用非同步的類(如ArrayList)。
對於“多線程環境,且List可能同時被多個線程操作”,此時,應該使用同步的類(如Vector)。
為什么LinkedLisk插入和刪除比較快?:因為鏈表插入時不需要移動后面的內容。
而arrayList數組這種,需要移動插入后的所有數組內容,耗時較多。
為什么ArrayList查詢比較快?因為arrayList數組直接返回第幾個元素,而鏈表先找到位置,在取值(查找比較耗時)