


1."一維數組"Series
Pandas數據結構Series:基本概念及創建
s.index 、 s.values
# Series 數據結構 # Series 是帶有標簽的一維數組,可以保存任何數據類型(整數,字符串,浮點數,Python對象等),軸標簽統稱為索引 import numpy as np
import pandas as pd
>>> s = pd.Series(np.random.rand(5)) >>> print(s,type(s)) 0 0.610318 1 0.235660 2 0.606445 3 0.070794 4 0.217530 dtype: float64 <class 'pandas.core.series.Series'> >>> print(s.index,type(s.index)) RangeIndex(start=0, stop=5, step=1) <class 'pandas.core.indexes.range.RangeIndex'> >>> print(s.values, type(s.values)) [0.61031815 0.23566007 0.60644485 0.0707941 0.21753049] <class 'numpy.ndarray'> >>> # .index查看series索引,類型為rangeindex # .values查看series值,類型是ndarray # 核心:series相比於ndarray,是一個自帶索引index的數組 → 一維數組 + 對應索引 # 所以當只看series的值的時候,就是一個ndarray # series和ndarray較相似,索引切片功能差別不大 # series和dict相比,series更像一個有順序的字典(dict本身不存在順序),其索引原理與字典相似(一個用key,一個用index)
1.1 Series 創建方法
由字典創建,字典的key就是index,values就是values
#Series 創建方法一:由字典創建,字典的key就是index,values就是values >>> dic = {'a':1,'b':2,'c':3,'4':4,'5':5} >>> s = pd.Series(dic) >>> print(s) a 1 b 2 c 3 4 4 5 5 dtype: int64 # 注意:key肯定是字符串,假如values類型不止一個會怎么樣? → dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5} >>> dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5} >>> s = pd.Series(dic) >>> print(s) a 1 b hello c 3 4 4 5 5 dtype: object >>>
# Series 創建方法二:由數組創建(一維數組) >>> arr = np.random.randn(5) >>> s = pd.Series(arr) # 默認index是從0開始,步長為1的數字 >>> print(arr) [1.08349965 0.52441811 0.76972371 0.35454797 0.39607907] >>> print(s) 0 1.083500 1 0.524418 2 0.769724 3 0.354548 4 0.396079 dtype: float64 >>> >>> s = pd.Series(arr,index = ['a','b','c','d','e'],dtype = np.object) >>> print(s) a 1.083500 b 0.524418 c 0.769724 d 0.354548 e 0.396079 dtype: object # index參數:設置index,長度保持一致 # dtype參數:設置數值類型
# Series 創建方法三:由標量創建 >>> s = pd.Series(10,index = range(4)) >>> print(s) 0 10 1 10 2 10 3 10 dtype: int64 # 如果data是標量值,則必須提供索引。該值會重復,來匹配索引的長度
# Series 名稱屬性:name >>> s1 = pd.Series(np.random.randn(5)) >>> print(s1) 0 -0.441627 1 -0.082186 2 0.379461 3 0.163183 4 0.851316 dtype: float64 >>> s2 = pd.Series(np.random.randn(5),name='test') >>> print(s2) 0 -0.951756 1 0.039272 2 0.618596 3 -0.027975 4 0.409068 Name: test, dtype: float64 >>> print(s1.name,s2.name,type(s2.name)) None test <class 'str'> # name為Series的一個參數,創建一個數組的 名稱 # .name方法:輸出數組的名稱,輸出格式為str,如果沒用定義輸出名稱,輸出為None >>> s3 = s2.rename('hahaha') >>> print(s3) 0 -0.951756 1 0.039272 2 0.618596 3 -0.027975 4 0.409068 Name: hahaha, dtype: float64 >>> print(s3.name,s2.name) hahaha test >>> # .rename()重命名一個數組的名稱,並且新指向一個數組,原數組不變
1.2 Series:索引
位置下標索引: s[0] 、s[-1]不錯在報錯哦 、s[1:4]左閉右開;
標簽索引: s.['b'] 、s[ ['a', 'b', 'c' ] ] 、s['a':'c']末端包含哦 ;
布爾索引: s.isnull () s.notnull() s[s>50] s[ s.notnull() ]
# 位置下標,類似序列 >>> s = pd.Series(np.random.rand(5)) >>> print(s) 0 0.233801 1 0.828125 2 0.184925 3 0.297279 4 0.346561 dtype: float64 >>> print(s[0],type(s[0]),s[0].dtype) 0.23380091830372507 <class 'numpy.float64'> float64 >>> print(float(s[0]),type(float(s[0]))) 0.23380091830372507 <class 'float'> #print(s[-1]) # 位置下標從0開始 # 輸出結果為numpy.float格式, # 可以通過float()函數轉換為python float格式 # numpy.float與float占用字節不同 # s[-1]結果如何? 會報錯
# 標簽索引 >>> s = pd.Series(np.random.rand(5),index=['a','b','c','d','e']) >>> print(s) a 0.685577 b 0.998041 c 0.451358 d 0.832554 e 0.090653 dtype: float64 >>> print(s['a'],type(s['a']),s['a'].dtype) 0.6855772922411842 <class 'numpy.float64'> float64 # 方法類似下標索引,用[]表示,內寫上index,注意index是字符串 >>> sci = s[['a','b','e']] >>> print(sci,type(sci)) a 0.685577 b 0.998041 e 0.090653 dtype: float64 <class 'pandas.core.series.Series'> >>> # 如果需要選擇多個標簽的值,用[[]]來表示(相當於[]中包含一個列表) # 多標簽索引結果是新的數組
# 切片索引 >>> s1 = pd.Series(np.random.rand(5)) >>> s2 = pd.Series(np.random.rand(5),index=['a','b','c','d','e']) >>> print(s1,'\n',s2) 0 0.917653 1 0.763179 2 0.837807 3 0.344435 4 0.360922 dtype: float64 a 0.126537 b 0.699155 c 0.289233 d 0.831209 e 0.273572 dtype: float64 >>> >>> print(s1[1:4],s1[4]) #左閉右開 1 0.763179 2 0.837807 3 0.344435 dtype: float64 0.36092197040034457 >>> print(s2['a':'c'],s2['c']) #用index做切片末端是包含的 a 0.126537 b 0.699155 c 0.289233 dtype: float64 0.28923306798234194 >>> print(s2[0:3],s2[3]) a 0.126537 b 0.699155 c 0.289233 dtype: float64 0.8312088483742163
# 注意:用index做切片是末端包含
>>> print(s2[:-1]) a 0.126537 b 0.699155 c 0.289233 d 0.831209 ##不包含末端的e dtype: float64 >>> print(s2[::2]) a 0.126537 c 0.289233 e 0.273572 dtype: float64
# 下標索引做切片,和list寫法一樣
# 布爾型索引 >>> s = pd.Series(np.random.rand(3)*100) >>> s[4] = None >>> print(s) 0 19.9515 1 59.9133 2 97.9854 4 None dtype: object >>> bs1 = s > 50 >>> bs2 = s.isnull() >>> bs3 = s.notnull() >>> print(bs1, type(bs1),bs1.dtype) 0 False 1 True 2 True 4 False dtype: bool <class 'pandas.core.series.Series'> bool >>> print(bs2, type(bs2),bs2.dtype) 0 False 1 False 2 False 4 True dtype: bool <class 'pandas.core.series.Series'> bool >>> print(bs3, type(bs3),bs3.dtype) 0 True 1 True 2 True 4 False dtype: bool <class 'pandas.core.series.Series'> bool >>> # 數組做判斷之后,返回的是一個由布爾值組成的新的數組 # .isnull() / .notnull() 判斷是否為空值 (None代表空值,NaN代表有問題的數值,兩個都會識別為空值) >>> print(s[s > 50]) 1 59.9133 2 97.9854 dtype: object >>> print(s[bs3]) 0 19.9515 1 59.9133 2 97.9854 dtype: object >>> # 布爾型索引方法:用[判斷條件]表示,其中判斷條件可以是 一個語句,或者是 一個布爾型數組!
1.3 Series:基本技巧
數據查看(.head() .tail() ) / 重新索引就是對index做重新排序(reindex(列表)) / 對齊 ( s1+s2 )/ 添加(s1.append(s2))、 修改s['a']=10 、 刪除值s.drop('a')
# 數據查看 >>> s = pd.Series(np.random.rand(50)) >>> print(s.head(10)) 0 0.282475 1 0.012153 2 0.642487 3 0.906513 4 0.195709 5 0.828506 6 0.194632 7 0.197138 8 0.503566 9 0.897846 dtype: float64 >>> print(s.tail()) 45 0.963916 46 0.642688 47 0.865840 48 0.835746 49 0.905786 dtype: float64 # .head()查看頭部數據 # .tail()查看尾部數據 # 默認查看5條
# 重新索引reindex # .reindex將會根據索引重新排序,如果當前索引不存在,則引入缺失值 >>> s = pd.Series(np.random.rand(3),index=['a','b','c']) >>> print(s) a 0.239126 b 0.862137 c 0.501479 dtype: float64 >>> s1 = s.reindex(['c','b','a','d']) >>> print(s1) c 0.501479 b 0.862137 a 0.239126 d NaN dtype: float64 # .reindex()中也是寫列表 # 這里'd'索引不存在,所以值為NaN >>> s2 = s.reindex(['c','b','a','d'],fill_value=0) # fill_value參數:填充缺失值的值
>>> print(s2)
c 0.501479
b 0.862137
a 0.239126
d 0.000000 dtype: float64
# Series對齊 >>> s1 = pd.Series(np.random.rand(3),index=['Jack','Marry','Kris']) >>> s2 = pd.Series(np.random.rand(3),index=['Wang','Jack','Marry']) >>> print(s1) Jack 0.583406 Marry 0.603579 Kris 0.812511 dtype: float64 >>> print(s2) Wang 0.582852 Jack 0.975184 Marry 0.990203 dtype: float64 >>> print(s1+s2) Jack 1.558589 Kris NaN Marry 1.593783 Wang NaN dtype: float64 # Series 和 ndarray 之間的主要區別是,Series 上的操作會根據標簽自動對齊 # index順序不會影響數值計算,以標簽來計算 # 空值和任何值計算結果扔為空值
# 刪除:.drop >>> s = pd.Series(np.random.rand(5),index=list('ngjur')) >>> print(s) n 0.239752 g 0.643085 j 0.313229 u 0.231923 r 0.836070 dtype: float64 >>> s1 = s.drop('n') >>> print(s1) g 0.643085 j 0.313229 u 0.231923 r 0.836070 dtype: float64 >>> s2 = s.drop(['g','j']) >>> print(s2) n 0.239752 u 0.231923 r 0.836070 dtype: float64 >>> print(s) n 0.239752 g 0.643085 j 0.313229 u 0.231923 r 0.836070 dtype: float64 # drop 刪除元素之后返回副本(inplace=False)
# 添加 >>> s1 = pd.Series(np.random.rand(5)) >>> s2 = pd.Series(np.random.rand(5),index=list('ngjur')) >>> print(s1,'\n',s2) 0 0.417249 1 0.226655 2 0.798018 3 0.984398 4 0.304693 dtype: float64 n 0.354443 g 0.609306 j 0.103994 u 0.392755 r 0.302959 dtype: float64 >>> s1[5] = 100 >>> s2['a'] = 100 >>> print(s1,'\n',s2) 0 0.417249 1 0.226655 2 0.798018 3 0.984398 4 0.304693 5 100.000000 dtype: float64 n 0.354443 g 0.609306 j 0.103994 u 0.392755 r 0.302959 a 100.000000 dtype: float64 # 直接通過下標索引/標簽index添加值 >>> s3 = s1.append(s2) >>> print(s3,'\n',s1) 0 0.417249 1 0.226655 2 0.798018 3 0.984398 4 0.304693 5 100.000000 n 0.354443 g 0.609306 j 0.103994 u 0.392755 r 0.302959 a 100.000000 dtype: float64 0 0.417249 1 0.226655 2 0.798018 3 0.984398 4 0.304693 5 100.000000 dtype: float64 # 通過.append方法,直接添加一個數組 # .append方法生成一個新的數組,不改變之前的數組
# 修改 >>> s = pd.Series(np.random.rand(3),index=['a','b','c']) >>> print(s) a 0.246992 b 0.349735 c 0.395859 dtype: float64 >>> s['a'] = 100 >>> s[['b','c']] = 200 >>> print(s) a 100.0 b 200.0 c 200.0 dtype: float64 >>> # 通過索引直接修改,類似序列
2. Pandas數據結構Dataframe
2.1 基本概念及創建
"二維數組"Dataframe:是一個表格型的數據結構,包含一組有序的列,其列的值類型可以是數值、字符串、布爾值等。
Dataframe中的數據以一個或多個二維塊存放,不是列表、字典或一維數組結構。
# Dataframe 數據結構 # Dataframe是一個表格型的數據結構,“帶有標簽的二維數組”。 # Dataframe帶有index(行標簽)和columns(列標簽) >>> data = {'name':['Jack','Tom','Marry'], ... 'age':[18,19,20], ... 'gender':['m','m','w']} >>> frame = pd.DataFrame(data) >>> print(frame) name age gender 0 Jack 18 m 1 Tom 19 m 2 Marry 20 w >>> print(type(frame)) <class 'pandas.core.frame.DataFrame'> >>> print(frame.index,'\n該數據類型為:',type(frame.index)) RangeIndex(start=0, stop=3, step=1) 該數據類型為: <class 'pandas.core.indexes.range.RangeIndex'> >>> print(frame.columns,'\n該數據類型為:',type(frame.columns)) Index(['name', 'age', 'gender'], dtype='object') 該數據類型為: <class 'pandas.core.indexes.base.Index'> >>> print(frame.values,'\n該數據類型為:',type(frame.values)) [['Jack' 18 'm'] ['Tom' 19 'm'] ['Marry' 20 'w']] 該數據類型為: <class 'numpy.ndarray'> # 查看數據,數據類型為dataframe # .index查看行標簽 # .columns查看列標簽 # .values查看值,數據類型為ndarray
# Dataframe 創建方法一:由數組/list組成的字典 # 創建方法:pandas.Dataframe() >>> data1 = {'a':[1,2,3], 'b':[3,4,5], 'c':[5,6,7]} >>> data2 = {'one':np.random.rand(3),'two':np.random.rand(3)} ## 這里如果嘗試 'two':np.random.rand(4) 會怎么樣?轉為DataFrame會報錯--> {'one': array([0.938673 , 0.90796881, 0.8890414 ]), 'two': array([0.37261493, 0.70430298, 0.24494145, 0.3924875 ])},轉為DataFrame 則 ValueError: arrays must all be same length >>> print(data1,'\n',data2) {'a': [1, 2, 3], 'b': [3, 4, 5], 'c': [5, 6, 7]} {'one': array([0.76701471, 0.01005053, 0.09453216]), 'two': array([0.58442534, 0.14610703, 0.03588291]))
>>> df1 = pd.DataFrame(data1) >>> df2 = pd.DataFrame(data2) >>> print(df1,'\n',df2) a b c 0 1 3 5 1 2 4 6 2 3 5 7 one two 0 0.767015 0.573035 1 0.010051 0.892624 2 0.094532 0.228811 >>> # 由數組/list組成的字典 創建Dataframe,columns為字典key,index為默認數字標簽 # 字典的值的長度必須保持一致! >>> df1 = pd.DataFrame(data1,columns=['b','c','a','d']) >>> print(df1) b c a d 0 3 5 1 NaN 1 4 6 2 NaN 2 5 7 3 NaN >>> df1 = pd.DataFrame(data1,columns=['b','c']) >>> print(df1) b c 0 3 5 1 4 6 2 5 7 # columns參數:可以重新指定列的順序,格式為list,如果現有數據中沒有該列(比如'd'),則產生NaN值 # 如果columns重新指定時候,列的數量可以少於原數據 >>> df2 = pd.DataFrame(data2,index=['f1','f2','f3']) # 這里如果嘗試 index = ['f1','f2','f3','f4'] 會怎么樣?長度不一致,報錯 >>> print(df2) one two f1 0.767015 0.573035 f2 0.010051 0.892624 f3 0.094532 0.228811 >>> # index參數:重新定義index,格式為list,長度必須保持一致
# Dataframe 創建方法二:由Series組成的字典 >>> data1 = {'one':pd.Series(np.random.rand(2)),'two':pd.Series(np.random.rand(3))} # 沒有設置index的Series >>> data2 = {'one':pd.Series(np.random.rand(2),index=['a','b']),'two':pd.Series(np.random.rand(3),index=['a','b','c'])} # 設置了index的Series >>> print(data1,'\n',data2) {'one': 0 0.682455 1 0.282592 dtype: float64, 'two': 0 0.995054 1 0.781587 2 0.959304 dtype: float64} {'one': a 0.940915 b 0.792245 dtype: float64, 'two': a 0.609878 b 0.910182 c 0.245590 dtype: float64} >>> df1 = pd.DataFrame(data1) >>> df2 = pd.DataFrame(data2) >>> print(df1) one two 0 0.682455 0.995054 1 0.282592 0.781587 2 NaN 0.959304 >>> print(df2) one two a 0.940915 0.609878 b 0.792245 0.910182 c NaN 0.245590 >>> # 由Seris組成的字典 創建Dataframe,columns為字典key,index為Series的標簽(如果Series沒有指定標簽,則是默認數字標簽) # Series可以長度不一樣,生成的Dataframe會出現NaN值
# Dataframe 創建方法三:通過二維數組直接創建 >>> ar = np.random.rand(9).reshape(3,3) >>> print(ar) [[0.43760945 0.3563898 0.16767573] [0.26565413 0.61673585 0.54037501] [0.95541978 0.05395517 0.02045977]] >>> df1 = pd.DataFrame(ar) >>> df2 = pd.DataFrame(ar,index=['a','b','c'],columns=['one','two','three']) >>> print(df1,'\n',df2) 0 1 2 0 0.437609 0.356390 0.167676 1 0.265654 0.616736 0.540375 2 0.955420 0.053955 0.020460 one two three a 0.437609 0.356390 0.167676 b 0.265654 0.616736 0.540375 c 0.955420 0.053955 0.020460 >>> # 通過二維數組直接創建Dataframe,得到一樣形狀的結果數據,如果不指定index和columns,兩者均返回默認數字格式 # index和colunms指定長度與原數組保持一致
# Dataframe 創建方法四:由字典組成的列表 >>> data = [{'one':1,'two':2},{'one':5,'two':10,'three':20}] >>> print(data) [{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 20}] >>> df1 = pd.DataFrame(data) >>> df2 = pd.DataFrame(data,index = ['a','b']) >>> df3 = pd.DataFrame(data,columns = ['one','two']) >>> print(df1,'\n',df2,'\n',df3) one three two 0 1 NaN 2 1 5 20.0 10 one three two a 1 NaN 2 b 5 20.0 10 one two 0 1 2 1 5 10 >>> # 由字典組成的列表創建Dataframe,columns為字典的key,index不做指定則為默認數組標簽 # colunms和index參數分別重新指定相應列及行標簽
# Dataframe 創建方法五:由字典組成的字典 data = {'Jack':{'math':90,'english':89,'art':78}, 'Marry':{'math':82,'english':95,'art':92}, 'Tom':{'math':78,'english':67}} df1 = pd.DataFrame(data) print(df1) # 由字典組成的字典創建Dataframe,columns為字典的key,index為子字典的key df2 = pd.DataFrame(data, columns = ['Jack','Tom','Bob']) df3 = pd.DataFrame(data, index = ['a','b','c']) print(df2) print(df3) # columns參數可以增加和減少現有列,如出現新的列,值為NaN # index在這里和之前不同,並不能改變原有index,如果指向新的標簽,值為NaN (非常重要!) #在cmd或pycharm里邊報錯。AttributeError: 'list' object has no attribute 'astype' Jack Marry Tom art 78 92 NaN english 89 95 67.0 math 90 82 78.0 Jack Tom Bob art 78 NaN NaN english 89 67.0 NaN math 90 78.0 NaN Jack Marry Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN
2.2 Dataframe:索引
Dataframe既有行索引也有列索引,可以被看做由Series組成的字典(共用一個索引)
選擇列 / 選擇行 / 切片 / 布爾判斷
df [ 'a' ] df [ ['a', 'b'] ] 選擇列 、 df.loc [ 'one' ] 按index選擇行
#選擇行df.loc[] 與列 df[ ]
>>> df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,index=['one','two','three'],columns=['a','b','c','d']) >>> print(df) a b c d one 15.715854 86.084608 22.376152 66.760504 two 3.761389 63.610935 85.752549 19.065568 three 77.277233 24.776938 13.159774 46.518796 >>> data1 = df['a'] >>> data2 = df[['a','c']] >>> print(data1,type(data1)) one 15.715854 two 3.761389 three 77.277233 Name: a, dtype: float64 <class 'pandas.core.series.Series'> >>> print(data2,type(data2)) a c one 15.715854 22.376152 two 3.761389 85.752549 three 77.277233 13.159774 <class 'pandas.core.frame.DataFrame'> >>> # 按照列名選擇列,只選擇一列輸出Series,選擇多列輸出Dataframe >>> data3 = df.loc['one'] >>> data4 = df.loc[['one','two']] >>> print(data3,type(data3)) a 15.715854 b 86.084608 c 22.376152 d 66.760504 Name: one, dtype: float64 <class 'pandas.core.series.Series'> >>> print(data4,type(data4)) a b c d one 15.715854 86.084608 22.376152 66.760504 two 3.761389 63.610935 85.752549 19.065568 <class 'pandas.core.frame.DataFrame'> >>> # 按照index選擇行,只選擇一行輸出Series,選擇多行輸出Dataframe
2.2.1 df[ ] -- 選擇列
#1. df[] - 選擇列 # 一般用於選擇列,也可以選擇行 >>> df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,index=['one','two','three'],columns=['a','b','c','d']) >>> print(df) a b c d one 94.536247 33.478780 10.738060 52.679418 two 37.573186 95.915130 8.529743 11.367094 three 80.758763 0.000355 36.136580 95.739389 >>> data1 = df['a'] >>> data2 = df[['b','c']] # 嘗試輸入 data2 = df[['b','c','e']]會報錯 >>> print(data1) one 94.536247 two 37.573186 three 80.758763 Name: a, dtype: float64 >>> print(data2) b c one 33.478780 10.738060 two 95.915130 8.529743 three 0.000355 36.136580 >>> # df[]默認選擇列,[]中寫列名(所以一般數據colunms都會單獨制定,不會用默認數字列名,以免和index沖突) # 單選列為Series,print結果為Series格式 # 多選列為Dataframe,print結果為Dataframe格式 >>> data3 = df[:1] #data3 = df[0] #這兩種都是錯誤的,0 'one' #data3 = df['one'] >>> print(data3,type(data3)) a b c d one 94.536247 33.47878 10.73806 52.679418 <class 'pandas.core.frame.DataFrame'> # df[]中為數字時,默認選擇行,且只能進行切片的選擇,不能單獨選擇(df[0]) # 輸出結果為Dataframe,即便只選擇一行 # df[]不能通過索引標簽名來選擇行(df['one']) # 核心筆記:df[col]一般用於選擇列,[]中寫列名
2.2.2df.loc[ ] - 按index選擇行
#2. df.loc[] - 按index選擇行 >>> df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=['one','two','three','four'],columns=['a','b','c','d']) >>> df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,columns=['a','b','c','d']) >>> print(df1,'\n',df2) a b c d one 36.881890 13.897714 5.237098 24.676327 two 42.183000 27.146129 49.074872 56.447147 three 6.935006 16.742130 5.955048 2.576066 four 49.843982 64.641184 70.038643 75.103787 a b c d 0 60.589246 60.305811 90.306763 46.761824 1 59.296330 6.039652 52.296003 97.149954 2 58.255476 13.837192 74.255506 84.082167 3 55.204207 17.340171 25.056553 84.518804 #單標簽索引,返回Series >>> data1 = df1.loc['one'] #單標簽索引返回Series >>> data2 = df2.loc[1] >>> print(data1,'\n',data2) a 36.881890 b 13.897714 c 5.237098 d 24.676327 Name: one, dtype: float64 a 59.296330 b 6.039652 c 52.296003 d 97.149954 Name: 1, dtype: float64 >>> #多標簽索引,順序可變 >>> data3 = df1.loc[['two','three','five']] >>> data4 = df2.loc[[3,2,1]] >>> print(data3) a b c d two 42.183000 27.146129 49.074872 56.447147 three 6.935006 16.742130 5.955048 2.576066 five NaN NaN NaN NaN #多標簽索引,如果標簽不存在則返回NaN >>> print(data4) a b c d 3 55.204207 17.340171 25.056553 84.518804 2 58.255476 13.837192 74.255506 84.082167 1 59.296330 6.039652 52.296003 97.149954 #切片索引 ,可以做切片對象 >>> data5 = df1.loc['one':'three'] #末端包含 >>> data6 = df2.loc[1:3] >>> print(data5) a b c d one 36.881890 13.897714 5.237098 24.676327 two 42.183000 27.146129 49.074872 56.447147 three 6.935006 16.742130 5.955048 2.576066 >>> print(data6) a b c d 1 59.296330 6.039652 52.296003 97.149954 2 58.255476 13.837192 74.255506 84.082167 3 55.204207 17.340171 25.056553 84.518804 # 核心筆記:df.loc[label]主要針對index選擇行,同時支持指定index,及默認數字index
2.2.3 df.iloc[ ] - 按整數位置選擇行
# df.iloc[] - 按照整數位置(從軸的0到length-1)選擇行 # 類似list的索引,其順序就是dataframe的整數位置,從0開始計 >>> df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=['one','two','three','four'],columns=['a','b','c','d']) >>> print(df) a b c d one 21.693396 38.203531 85.439983 9.740751 two 28.940287 57.861274 68.467893 60.788056 three 81.871777 57.813973 60.092876 1.637220 four 67.789269 95.648501 62.837383 65.794259 # 單位置索引; 和loc索引不同,不能索引超出數據行數的整數位置 >>> print(df.iloc[0]) a 21.693396 b 38.203531 c 85.439983 d 9.740751 Name: one, dtype: float64 >>> print(df.iloc[-1]) a 67.789269 b 95.648501 c 62.837383 d 65.794259 Name: four, dtype: float64 >>> print(df.iloc[4]) #索引超過行數了 IndexError: single positional indexer is out-of-bounds # 多位置索引,順序可變 >>> print(df.iloc[[0,2]]) ##從0開始 ,第0行和第3行即末端包含 a b c d one 21.693396 38.203531 85.439983 9.740751 three 81.871777 57.813973 60.092876 1.637220 >>> print(df.iloc[[3,2,1]]) a b c d four 67.789269 95.648501 62.837383 65.794259 three 81.871777 57.813973 60.092876 1.637220 two 28.940287 57.861274 68.467893 60.788056 #切片索引 >>> print(df.iloc[1:3]) #末端不包含 a b c d two 28.940287 57.861274 68.467893 60.788056 three 81.871777 57.813973 60.092876 1.637220 >>> print(df.iloc[::2]) a b c d one 21.693396 38.203531 85.439983 9.740751 three 81.871777 57.813973 60.092876 1.637220 >>>
2.2.4布爾型索引
df < 20 df [ df < 20 ] 、 單列做判斷df [ 'a' ] >20 、多列做判斷df [ ['a', 'b'] ] >20 、多行做判斷 df.loc[ ['one', 'three'] ] < 50
#布爾型索引 # 和Series原理相同 >>> df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=['one','two','three','four'],columns=['a','b','c','d']) >>> print(df) a b c d one 17.575951 66.534852 96.774872 94.415801 two 67.485820 11.871447 19.140092 9.634462 three 32.052532 8.891445 63.209949 92.451412 four 6.931403 0.622515 29.972335 24.438536 >>> b1 = df < 20 # 也可以書寫為 df[df < 20] >>> print(b1,type(b1)) a b c d one True False False False two False True True True three False True False False four True True False False <class 'pandas.core.frame.DataFrame'> >>> print(df[b1]) a b c d one 17.575951 NaN NaN NaN two NaN 11.871447 19.140092 9.634462 three NaN 8.891445 NaN NaN four 6.931403 0.622515 NaN NaN >>> # 不做索引則會對數據每個值進行判斷 # 索引結果保留 所有數據:True返回原數據,False返回值為NaN
>>> b2 = df['a'] > 50 >>> print(b2,type(b2)) one False two True three False four False Name: a, dtype: bool <class 'pandas.core.series.Series'> >>> print(df[b2]) #會把two為True的行保留,包括小於50的數 a b c d two 67.48582 11.871447 19.140092 9.634462 # 單列做判斷,索引結果保留單列判斷為True的行數據,包括其他列
>>> b3 = df[['a','b']] > 50 >>> print(b3,type(b3)) a b one False True two True False three False False four False False <class 'pandas.core.frame.DataFrame'> >>> print(df[b3]) a b c d one NaN 66.534852 NaN NaN two 67.48582 NaN NaN NaN three NaN NaN NaN NaN four NaN NaN NaN NaN # 多列做判斷,索引結果保留所有數據:True返回原數據,False返回值為NaN
>>> >>> b4 = df.loc[['one','three']] < 50 >>> print(b4,type(b4)) a b c d one True False False False three True True False False <class 'pandas.core.frame.DataFrame'> >>> print(df[b4]) a b c d one 17.575951 NaN NaN NaN two NaN NaN NaN NaN three 32.052532 8.891445 NaN NaN four NaN NaN NaN NaN >>> # 多行做判斷,索引結果保留 所有數據:True返回原數據,False返回值為NaN
2.2.5 多重索引:比如同時索引行和列
先選擇列再選擇行 :df[ 'a' ].loc[ ['a', 'b', 'c'] ] df [ df [ 'a' ] < 50 ].iloc[ :2 ]
#多重索引:比如同時索引行和列 # 先選擇列再選擇行 —— 相當於對於一個數據,先篩選字段,再選擇數據量 >>> df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=['one','two','three','four'],columns=['a','b','c','d']) >>> print(df) a b c d one 12.408141 98.202562 38.715980 62.978631 two 93.980397 39.455335 77.214844 42.495949 three 4.210569 48.999179 10.320513 51.919796 four 73.838276 72.854442 98.555301 27.902682 >>> print(df['a'].loc[['one','three']]) # 選擇a列的one,three行 one 12.408141 three 4.210569 Name: a, dtype: float64 >>> print(df[['b','c','d']].iloc[::2]) # 選擇b,c,d列的one,three行 b c d one 98.202562 38.715980 62.978631 three 48.999179 10.320513 51.919796 >>> print(df[df['a'] < 50].iloc[:2]) # 選擇滿足判斷索引的前兩行數據 a b c d one 12.408141 98.202562 38.715980 62.978631 three 4.210569 48.999179 10.320513 51.919796 >>>
2.3 Dataframe:基本技巧
數據查看、轉置 / 添加、修改、刪除值 / 對齊 / 排序
######數據查看(.head() .tail() )與轉置( .T )
>>> df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,columns=['a','b']) >>> print(df) a b 0 41.447858 93.937878 1 29.684415 58.637993 2 2.260561 23.601327 3 79.555013 55.611010 4 64.825361 92.444769 5 53.716091 40.166872 6 19.657354 47.842487 7 22.705715 26.977886 >>> >>> print(df.head(2)) a b 0 41.447858 93.937878 1 29.684415 58.637993 >>> print(df.tail()) a b 3 79.555013 55.611010 4 64.825361 92.444769 5 53.716091 40.166872 6 19.657354 47.842487 7 22.705715 26.977886
# .head()查看頭部數據
# .tail()查看尾部數據
# 默認查看5條
>>> print(df.T) 0 1 2 3 4 5 6 7 a 41.447858 29.684415 2.260561 79.555013 64.825361 53.716091 19.657354 22.705715 b 93.937878 58.637993 23.601327 55.611010 92.444769 40.166872 47.842487 26.977886
# .T 轉置
# 添加與修改 >>> df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,columns=['a','b','c','d']) >>> print(df) a b c d 0 40.395591 38.023720 64.954712 82.833601 1 69.405393 77.664903 76.566145 11.218753 2 61.793220 95.929196 15.415231 79.368691 3 29.482119 85.228170 94.134330 25.678733 >>> df['e'] = 10 >>> df.loc[4] = 20 >>> print(df) a b c d e 0 40.395591 38.023720 64.954712 82.833601 10 1 69.405393 77.664903 76.566145 11.218753 10 2 61.793220 95.929196 15.415231 79.368691 10 3 29.482119 85.228170 94.134330 25.678733 10 4 20.000000 20.000000 20.000000 20.000000 20 >>> # 新增列/行並賦值 >>> df['e'] = 20 >>> df[['a','c']] = 100 >>> print(df) a b c d e 0 100 38.023720 100 82.833601 20 1 100 77.664903 100 11.218753 20 2 100 95.929196 100 79.368691 20 3 100 85.228170 100 25.678733 20 4 100 20.000000 100 20.000000 20 >>> # 索引后直接修改值
# 刪除 del / drop() ;inplace = False/True 、 axis = 0 為行 | axis = 1 為列 >>> df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,columns=['a','b','c','d']) >>> print(df) a b c d 0 76.082974 91.636219 70.831268 82.900443 1 16.328769 9.910538 36.670726 67.187492 2 96.234567 16.699254 0.257354 31.032239 3 16.659137 85.438085 91.993957 33.055454 >>> del df['a'] >>> print(df) b c d 0 91.636219 70.831268 82.900443 1 9.910538 36.670726 67.187492 2 16.699254 0.257354 31.032239 3 85.438085 91.993957 33.055454 >>> # del語句 - 刪除列
>>> print(df.drop(0)) ##刪除行 b c d 1 9.910538 36.670726 67.187492 2 16.699254 0.257354 31.032239 3 85.438085 91.993957 33.055454 >>> print(df.drop([1,2])) b c d 0 91.636219 70.831268 82.900443 3 85.438085 91.993957 33.055454 >>> print(df) ##原數據不改變 b c d 0 91.636219 70.831268 82.900443 1 9.910538 36.670726 67.187492 2 16.699254 0.257354 31.032239 3 85.438085 91.993957 33.055454 >>> # drop()刪除行,inplace=False → 刪除后生成新的數據,不改變原數據
>>> print(df1.drop(['1'], inplace=True)) #默認為 inplace=False, inplace = True是把原數據也刪除了
None
>>> print(df.drop(['d'],axis = 1)) #axis = 1是刪除列 ---> 用 [ ],不改變原數據 ; axis = 0是刪除行,不改變原數據。 b c 0 91.636219 70.831268 1 9.910538 36.670726 2 16.699254 0.257354 3 85.438085 91.993957 >>> print(df) b c d 0 91.636219 70.831268 82.900443 1 9.910538 36.670726 67.187492 2 16.699254 0.257354 31.032239 3 85.438085 91.993957 33.055454 >>> # drop()刪除列,需要加上axis = 1,inplace=False → 刪除后生成新的數據,不改變原數據
#對齊 + >>> df1 = pd.DataFrame(np.random.randn(10,4),columns=['A','B','C','D']) >>> df2 = pd.DataFrame(np.random.randn(7,3),columns=['A','B','C']) >>> print(df1) A B C D 0 -0.711905 1.102947 -0.203125 0.464160 1 -1.633976 -0.126530 1.437948 1.721049 2 1.323383 -0.277546 0.060134 0.207093 3 1.708294 0.815721 -0.151322 0.522937 4 0.263572 -0.674251 -1.325148 -2.702464 5 1.659823 -0.131172 -1.114735 -2.182527 6 -0.186723 -0.071455 -1.370213 0.513062 7 0.381603 1.265310 0.083247 1.084061 8 0.399770 0.765438 -1.066299 0.626402 9 0.781321 -1.612135 -0.387417 -0.673143 >>> print(df2) A B C 0 0.012025 -0.488556 0.243515 1 -0.751000 0.277448 0.013675 2 1.008712 -1.231084 -0.523329 3 0.663029 -0.752602 -0.724749 4 -0.755075 0.303930 1.288335 5 -1.233975 -1.241185 -0.414564 6 -0.251519 -1.384259 -0.996120 >>> print(df1+df2) #DataFrame對象之間的數據自動按照列和索引(行標簽)對齊。 A B C D 0 -0.699879 0.614391 0.040390 NaN 1 -2.384977 0.150917 1.451622 NaN 2 2.332095 -1.508629 -0.463195 NaN 3 2.371323 0.063119 -0.876071 NaN 4 -0.491503 -0.370321 -0.036813 NaN 5 0.425847 -1.372357 -1.529299 NaN 6 -0.438242 -1.455714 -2.366333 NaN 7 NaN NaN NaN NaN 8 NaN NaN NaN NaN 9 NaN NaN NaN NaN >>>
# 排序1 - 按值排序 .sort_values # 同樣適用於Series >>> df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,columns=['a','b','c','d']) >>> print(df) b c d 0 91.636219 70.831268 82.900443 1 9.910538 36.670726 67.187492 2 16.699254 0.257354 31.032239 3 85.438085 91.993957 33.055454 >>> print(df1.sort_values(['a'],ascending=True)) #升序; ascending參數:設置升序降序,默認升序。 a b c d 0 3.255012 35.188882 99.290551 67.897580 1 43.221583 36.144081 84.124544 18.844967 3 47.364524 41.530226 20.800088 22.597198 2 83.170528 1.550416 7.810286 61.375057 >>> print(df1.sort_values(['a'],ascending=False)) #降序 a b c d 2 83.170528 1.550416 7.810286 61.375057 3 47.364524 41.530226 20.800088 22.597198 1 43.221583 36.144081 84.124544 18.844967 0 3.255012 35.188882 99.290551 67.897580 # 單列排序
>>> df2 = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],'b':list(range(8)),'c':list(range(8,0,-1))}) >>> print(df2) a b c 0 1 0 8 1 1 1 7 2 1 2 6 3 1 3 5 4 2 4 4 5 2 5 3 6 2 6 2 7 2 7 1 >>> print(df2.sort_values(['a','c'])) #多列排序,按列順序排序。 a b c 3 1 3 5 2 1 2 6 1 1 1 7 0 1 0 8 7 2 7 1 6 2 6 2 5 2 5 3 4 2 4 4 >>>
# 排序2 - 索引排序 .sort_index >>> df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=[5,4,3,2],columns=['a','b','c','d']) >>> df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,index=['h','s','x','g'],columns=['a','b','c','d']) >>> print(df1) a b c d 5 70.899006 29.653652 38.273239 99.254931 4 68.173016 27.051275 43.236560 48.573018 3 35.870577 41.990773 78.055733 63.581352 2 20.946046 19.712039 33.906534 89.749668 >>> print(df1.sort_index()) a b c d 2 20.946046 19.712039 33.906534 89.749668 3 35.870577 41.990773 78.055733 63.581352 4 68.173016 27.051275 43.236560 48.573018 5 70.899006 29.653652 38.273239 99.254931 >>> print(df2) a b c d h 62.234181 32.481881 83.483145 39.145470 s 41.003081 16.515826 19.958257 30.331726 x 60.486728 20.206607 91.149820 31.731089 g 22.132468 61.116998 19.929379 98.976248 >>> print(df2.sort_index()) a b c d g 22.132468 61.116998 19.929379 98.976248 h 62.234181 32.481881 83.483145 39.145470 s 41.003081 16.515826 19.958257 30.331726 x 60.486728 20.206607 91.149820 31.731089 >>> # 按照index排序 # 默認 ascending=True, inplace=False
