大數據開發實戰:數據流圖及相關數據技術


  1、大數據流程圖

    

 

  2、大數據各個環節主要技術

    

  2.1、數據處理主要技術

    Sqoop:(發音:skup)作為一款開源的離線數據傳輸工具,主要用於Hadoop(Hive) 與傳統數據庫(MySql,PostgreSQL)間的數據傳遞。它可以將一個關系數據庫中數據導入Hadoop的HDFS中,

        也可以將HDFS中的數據導入關系型數據庫中。

    Flume:實時數據采集的一個開源框架,它是Cloudera提供的一個高可用用的、高可靠、分布式的海量日志采集、聚合和傳輸的系統。目前已經是Apache的頂級子項目。使用Flume可以收集諸如日志、時間等數據

        並將這些數據集中存儲起來供下游使用(尤其是數據流框架,例如Storm)。和Flume類似的另一個框架是Scribe(FaceBook開源的日志收集系統,它為日志的分布式收集、統一處理提供一個可擴展的、高容錯的簡單方案)

    Kafka:通常來說Flume采集數據的速度和下游處理的速度通常不同步,因此實時平台架構都會用一個消息中間件來緩沖,而這方面最為流行和應用最為廣泛的無疑是Kafka。它是由LinkedIn開發的一個分布式消息系統,

        以其可以水平擴展和高吞吐率而被廣泛使用。目前主流的開源分布式處理系統(如Storm和Spark等)都支持與Kafka 集成。

        Kafka是一個基於分布式的消息發布-訂閱系統,特點是速度快、可擴展且持久。與其他消息發布-訂閱系統類似,Kafka可在主題中保存消息的信息。生產者向主題寫入數據,消費者從主題中讀取數據。

        作為一個分布式的、分區的、低延遲的、冗余的日志提交服務。和Kafka類似消息中間件開源產品還包括RabbiMQ、ActiveMQ、ZeroMQ等。

 

    MapReduce:

        MapReduce是Google公司的核心計算模型,它將運行於大規模集群上的復雜並行計算過程高度抽象為兩個函數:map和reduce。MapReduce最偉大之處在於其將處理大數據的能力賦予了普通開發人員,

        以至於普通開發人員即使不會任何的分布式編程知識,也能將自己的程序運行在分布式系統上處理海量數據。

 

    Hive: MapReduce將處理大數據的能力賦予了普通開發人員,而Hive進一步將處理和分析大數據的能力賦予了實際的數據使用人員(數據開發工程師、數據分析師、算法工程師、和業務分析人員)。

        Hive是由Facebook開發並貢獻給Hadoop開源社區的,是一個建立在Hadoop體系結構上的一層SQL抽象。Hive提供了一些對Hadoop文件中數據集進行處理、查詢、分析的工具。它支持類似於傳統RDBMS的SQL語言

        的查詢語言,一幫助那些熟悉SQL的用戶處理和查詢Hodoop在的數據,該查詢語言稱為Hive SQL。Hive SQL實際上先被SQL解析器解析,然后被Hive框架解析成一個MapReduce可執行計划,

        並按照該計划生產MapReduce任務后交給Hadoop集群處理。

 

    Spark:盡管MapReduce和Hive能完成海量數據的大多數批處理工作,並且在打數據時代稱為企業大數據處理的首選技術,但是其數據查詢的延遲一直被詬病,而且也非常不適合迭代計算和DAG(有限無環圖)計算。

        由於Spark具有可伸縮、基於內存計算能特點,且可以直接讀寫Hadoop上任何格式的數據,較好地滿足了數據即時查詢和迭代分析的需求,因此變得越來越流行。

        Spark是UC Berkeley AMP Lab(加州大學伯克利分校的 AMP實驗室)所開源的類Hadoop MapReduce的通用並行框架,它擁有Hadoop MapReduce所具有的優點,但不同MapReduce的是,

        Job中間輸出結果可以保存在內存中,從而不需要再讀寫HDFS ,因此能更好適用於數據挖掘和機器學習等需要迭代的MapReduce算法。

        Spark也提供類Live的SQL接口,即Spark SQL,來方便數據人員處理和分析數據。

        Spark還有用於處理實時數據的流計算框架Spark Streaming,其基本原理是將實時流數據分成小的時間片段(秒或幾百毫秒),以類似Spark離線批處理的方式來處理這小部分數據。

 

    Storm:MapReduce、Hive和Spark是離線和准實時數據處理的主要工具,而Storm是實時處理數據的。

        Storm是Twitter開源的一個類似於Hadoop的實時數據處理框架。Storm對於實時計算的意義相當於Hadoop對於批處理的意義。Hadoop提供了Map和Reduce原語,使對數據進行批處理變得非常簡單和優美。

        同樣,Storm也對數據的實時計算提供了簡單的Spout和Bolt原語。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面運行的是MapReduce的Job,而在Storm上面運行的是Topology(拓撲)。

        Storm拓撲任務和Hadoop MapReduce任務一個非常關鍵的區別在於:1個MapReduce Job最終會結束,而1一個Topology永遠運行(除非顯示的殺掉它,),所以實際上Storm等實時任務的資源使用相比離線

        MapReduce任務等要大很多,因為離線任務運行完就釋放掉所使用的計算、內存等資源,而Storm等實時任務必須一直占有直到被顯式的殺掉。

        Storm具有低延遲、分布式、可擴展、高容錯等特性,可以保證消息不丟失,目前Storm, 類Storm或基於Storm抽象的框架技術是實時處理、流處理領域主要采用的技術。

 

    Flink:在數據處理領域,批處理任務和實時流計算任務一般被認為是兩種不同的任務,一個數據項目一般會被設計為只能處理其中一種任務,例如Storm只支持流處理任務,而MapReduce, Hive只支持批處理任務。

          Apache Flink是一個同時面向分布式實時流處理和批量數據處理的開源數據平台,它能基於同一個Flink運行時(Flink Runtime),提供支持流處理和批處理兩種類型應用的功能。Flink在實現流處理和批處理時,

        與傳統的一些方案完全不同,它從另一個視角看待流處理和批處理,將二者統一起來。Flink完全支持流處理,批處理被作為一種特殊的流處理,只是它的數據流被定義為有界的而已。基於同一個Flink運行時,

        Flink分別提供了流處理和批處理API,而這兩種API也是實現上層面向流處理、批處理類型應用框架的基礎。

 

    Beam:Google開源的Beam在Flink基礎上更進了一步,不但希望統一批處理和流處理,而且希望統一大數據處理范式和標准。Apache Beam項目重點在於數據處理的的編程范式和接口定義,並不涉及具體執行引擎

        的實現。Apache Beam希望基於Beam開發的數據處理程序可以執行在任意的分布式計算引擎上。

        Apache Beam主要由Beam SDK和Beam Runner組成,Beam SDK定義了開發分布式數據處理任務業務邏輯的API接口,生成的分布式數據處理任務Pipeline交給具體的Beam Runner執行引擎。Apache Flink

        目前支持的API是由Java語言實現的,它支持的底層執行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。

 

  2.2、數據存儲主要技術

    HDFS:Hadoop Distributed File System,簡稱FDFS,是一個分布式文件系統。它有一定高度的容錯性和高吞吐量的數據訪問,非常適合大規模數據集上的應用。HDFS提供了一個高容錯性和高吞吐量的海量數據存儲解決方案。

        在Hadoop的整個架構中,HDFS在MapReduce任務處理過程在中提供了對文件操作的和存儲的的支持,MapReduce在HDFS基礎上實現了任務的分發、跟蹤和執行等工作,並收集結果,兩者相互作用,共同完成了

        Hadoop分布式集群的主要任務。

    HBase:HBase是一種構建在HDFS之上的分布式、面向列族的存儲系統。在需要實時讀寫並隨機訪問超大規模數據集等場景下,HBase目前是市場上主流的技術選擇。

        HBase技術來源於Google論文《Bigtable :一個結構化數據的分布式存儲系統》。如同Bigtable利用了Google File System提供的分布式數據存儲方式一樣,HBase在HDFS之上提供了類似於Bigtable的能力。

        HBase解決了傳遞數據庫的單點性能極限。實際上,傳統的數據庫解決方案,尤其是關系型數據庫也可以通過復制和分區的方法來提高單點性能極限,但這些都是后知后覺的,安裝和維護都非常復雜。

        而HBase從另一個角度處理伸縮性的問題,即通過線性方式從下到上增加節點來進行擴展。

        HBase 不是關系型數據庫,也不支持SQL,它的特性如下:

        1、大:一個表可以有上億上,上百萬列。

        2、面向列:面向列表(簇)的存儲和權限控制,列(簇)獨立檢索。

        3、稀疏:為空(null)的列不占用存儲空間,因此表可以設計的非常稀疏。

        4、無模式::每一行都有一個可以排序的主鍵和任意多的列。列可以根據需求動態增加,同一張表中不同的行可以有截然不同的列。

        5、數據多版本:每個單元的數據可以有多個版本,默認情況下,版本號字段分開,它是單元格插入時的時間戳。

        6、數據類型單一:HBase中數據都是字符串,沒有類型。

        

   2.3、數據應用主要技術

    數據有很多應用方式,如固定報表、即時分析、數據服務、數據分析、數據挖掘和機器學習等。下面說下即時分析Drill框架、數據分析R語言、機器學習TensorFlow框架。

    Drill:Apache Drill是一個開源實時大數據分布式查詢引擎,目前已成為Apache的頂級項目。Drill開源版本的Google Dremel。Dremel是Google的“交互式”數據分析系統,可以組建成規模上千的集群,處理PB級別的數據。

       MapReduce處理數據一般在分鍾甚至小時級別,而Dremel將處理時間縮短至秒級,即Drill是對MapReduce的有力補充。Drill兼容ANSI SQL語法作為接口,支持本地文件、HDFS、Hive、HBase、MongoDb作為

       存儲的數據查詢。文件格式支持Parquet、CSV、TSV以及Json這種無模式(schema-free)數據。所有這些數據都像傳統數據庫的表查詢一樣進行快速實時查詢。

    

    R語言:R是一種開源的數據分析解決方案。R流行原因如下:

        1、R是自由軟件:完全免費、開源。可在官方網站及其鏡像中下載任何有關的安裝程序、源代碼、程序包及其源代碼、文檔資料,標准的安裝文件自身就帶有許多模塊和內嵌統計函數,安裝好后可以直接實現許多

          常用的統計功能。

        2、R是一種可編程的語言:作為一個開放的統計編程環境,R語言的語法通俗易懂,而且目前大多數新的統計方法和技術都可以在R中找到。

        3、R具有很強的互動性:除了圖形輸出在另外的窗口,它的熟入輸出都是在一個窗口進行的,輸入語法中如果有錯馬上會在窗口中給出提示,對以前輸入過的命令有記憶功能,可以隨時再現、編輯、修改以滿足

          用戶的需要,輸出的圖形可以直接保存為JPG、BMP、PNG等圖片格式,還可以直接保存為PDF文件。此外,R語言和其它編程語言和數據庫直接有很好的接口。

 

    TensorFlow:TensorFlow是一個非常靈活的框架,它能夠運行在個人電腦或服務器的單個/多個cpu和GPU上,甚至是移動設備上,它最早是為了研究機器學習和深度神經網絡而開發的,后來因為通用而開源。

          TensorFlow是基於數據流圖的處理框架,TensorFlow節點表示數學運算,邊表示運算節點之間的數據交互。TensorFlow從字母意義上來講有兩層含義:一是Tensor代表的是節點之間傳遞的數據,通常這個數據

          是一個多維度矩陣(multidimensional data arrays)或一維向量;二是Flow指的數據流,形象理解就是數據按照流的形式進入數據運算圖的各個節點。

 

  3、數據相關從業者和角色

    

    

    

    

 

  4、數據埋點

    后台數據庫和日志文件一般只能滿足常規的統計分析,對於具體的產品和項目來說,一般還要根據項目的目標和分析需求進行針對性的“數據埋點”工作,所謂埋點:就是在額外的正常功能邏輯上添加針對性的邏輯統計,即期望的

  事件是否發生,發生后應該記錄那些信息,比如用戶在當前頁面是否用鼠標滾動頁面、有關的頁面區域是否曝光了、當前的用戶操作的的時間是多少、停留時長多少、這些都需要前端工程師進行針對性的埋點才能滿足有關的分析需求。

    數據埋點工作一般由產品經理和分析師預先確定分析需求,然后由數據開發團隊對接前端和后端開發完成具體的埋點工作。

 

  參考資料:《離線和實時大數據開發實戰》


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM