0. alexnet 工具箱下載
下載地址:Neural Network Toolbox(TM) Model for AlexNet Network
- 需要先注冊(十分簡單),登陸,下載;
- 下載完成之后,windows 是無法運行該文件的;
- 需要打開 matlab,進入到該文件所在的路徑,雙擊運行;(注:需要較久的時間下載安裝 alexnet)
1. demo(十一行代碼)
deep-learning-in-11-lines-of-matlab-code
clear
camera = webcam;
nnet = alexnet;
while true
picture = camera.snapshot;
picture = imresize(picture, [227, 227]);
label = classify(nnet, picture);
image(picture);
title(char(label));
end
2. 網絡結構
>> nnet = alexnet;
>> nnet.Layers
1 'data' Image Input 227x227x3 images with 'zerocenter' normalization
2 'conv1' Convolution 96 11x11x3 convolutions with stride [4 4] and padding [0 0]
3 'relu1' ReLU ReLU
4 'norm1' Cross Channel Normalization cross channel normalization with 5 channels per element
5 'pool1' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
6 'conv2' Convolution 256 5x5x48 convolutions with stride [1 1] and padding [2 2]
7 'relu2' ReLU ReLU
8 'norm2' Cross Channel Normalization cross channel normalization with 5 channels per element
9 'pool2' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
10 'conv3' Convolution 384 3x3x256 convolutions with stride [1 1] and padding [1 1]
11 'relu3' ReLU ReLU
12 'conv4' Convolution 384 3x3x192 convolutions with stride [1 1] and padding [1 1]
13 'relu4' ReLU ReLU
14 'conv5' Convolution 256 3x3x192 convolutions with stride [1 1] and padding [1 1]
15 'relu5' ReLU ReLU
16 'pool5' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
17 'fc6' Fully Connected 4096 fully connected layer
18 'relu6' ReLU ReLU
19 'drop6' Dropout 50% dropout
20 'fc7' Fully Connected 4096 fully connected layer
21 'relu7' ReLU ReLU
22 'drop7' Dropout 50% dropout
23 'fc8' Fully Connected 1000 fully connected layer
24 'prob' Softmax softmax
25 'output' Classification Output cross-entropy with 'tench', 'goldfish', and 998 other classes