利用Linux系統中安裝的spark來統計:
1.選擇目錄,並創建一個存放文本的目錄,將要處理的文本保存在該目錄下以供查找操作:
① cd /usr/local ②mkdir mycode ③ cd mycode ④查看當前新目錄: ll
⑤新建文本: vim wordcount.txt (文本內容隨機copy一段英文)
[root@node01 mycode]# vim wordcount.txt uded among the most successful influencers in Open Source, The Apache Software Foundation's commitment to collaborative development has long served as a model for producing consistently high quality software that advances the future of open development. https://s.apache.org/PIRA
2.為方便查詢文本和其它操作,可以在當前操作節點上復制另一個操作節點,作為它的第二個終端操作窗口:
如:打開:node01------>復制node01 ,然后在復制的節點上去查詢之前所創建的目錄及文本.
>>>cd /usr/local/mycode/ >>>ll
3.啟動spark: 本機spark安裝在(/home/mysoft/spark-1.6),以具體路徑為准!
① 跳轉路徑
cd /home/mysoft/spark-1.6
②啟動命令: (或者 cd bin ----->pyspark (enter) 亦可)
./bin/pyspark
-------出現spark的正常啟動信息即啟動成功!
Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 1.6.0 /_/ Using Python version 3.5.0 (default, Jul 12 2018 03:34:21) SparkContext available as sc, HiveContext available as sqlContext. >>>
4.加載文件:
>>>textFile = sc.textFile("file:///usr/local/mycode/wordcount.txt") >>> textFile.first()
之后會在屏幕顯示之前創建的文本!
注:first()是一個“行動”(Action)類型的操作,會啟動真正的計算過程,從文件中加載數據到變量textFile中,並取
出第一行文本,另因為Spark采用了惰性機制,在執行轉換操作的時候,即使我們輸入了錯誤的語句,pyspark也不
會馬上報錯,而是等到執行“行動”類型的語句時啟動真正的計算,那個時候“轉換”操作語句中的錯誤就會顯示出來:
拒絕連接!
5.統計詞頻:(繼續上述代碼輸入)
<<<Count = textFile.flatMap(lambda line: line.split(" ")).map(lambda word: (word,1)).reduceByKey(lambda a, b : a + b) <<<Count.collect()
6.打印結果:
[('development', 1), ('producing', 1), ('among', 1), ('Source,', 1), ('for', 1), ('quality', 1), ('to', 1), ('influencers', 1), ('advances', 1), ('collaborative', 1), ('model', 1), ('in', 1), ('the', 2), ('of', 1), ('has', 1), ('successful', 1), ('Software', 1), ("Foundation's", 1), ('most', 1), ('long', 1), ('that', 1), ('uded', 1), ('as', 1), ('Open', 1), ('The', 1), ('commitment', 1), ('software', 1), ('consistently', 1), ('a', 1), ('development.', 1), ('high', 1), ('future', 1), ('Apache', 1), ('served', 1), ('open', 1), ('https://s.apache.org/PIRA', 1)]