『度量學習』知識梳理


圖片發自簡書App

graph RL subgraph 0 a1[度量學習] --> |也稱為馬氏度量學習問題|b1[線性變換] a1[度量學習] --> b2[非線性變換] end subgraph 1 b1 --> c1[監督學習] c1 --> |該類型的算法充分利用數據的標簽信息|d1[全局] c1 --> |該類型的算法同時考慮數據的標簽信息和數據點之間的幾何關系|d2[局部] end subgraph 2 b1 --> c2[非監督學習] end subgraph 3 d1 --> f1[ITML] d1 --> f2[MMC] d1 --> f3[MCML] end subgraph 4 d2 --> g1[NCA] d2 --> g2[LMNN] d2 --> g3[RCA] d2 --> g4[Local LDA] end subgraph 5 c2 --> e1[PCA] c2 --> e2[MDS] c2 --> e3[NMF] c2 --> e4[ICA] c2 --> e5[NPE] c2 --> e6[LPP] end subgraph 6 b2 --> b3[非線性降維] b2 --> b4[核方法] end subgraph 7 b3 --> h1[ISOMAP] b3 --> h2[LLE] b3 --> h3[LE] end subgraph 8 b4 --> t1[Non-Mahalanobis Local Distance Functions] b4 --> t2[Mahalanobis Local Distance Functions] b4 --> t3[Metric Learning with Neural Networks] end
  • ITML: Information-theoretic metric learning
  • MMC: Mahalanobis Metric Learning for Clustering
  • MCML: Maximally Collapsing Metric Learning
  • NCA: Neighbourhood Components Analysis
  • LMNN: Large-Margin Nearest Neighbors
  • RCA: Relevant Component Analysis
  • Local LDA: Local Linear Discriminative Analysis
  • PCA: Pricipal Components Analysis(主成分分析)
  • MDS: Multi-dimensional Scaling(多維尺度變換)
  • NMF: Non-negative Matrix Factorization(非負矩陣分解)
  • ICA: Independent components analysis(獨立成分分析)
  • NPE: Neighborhood Preserving Embedding(鄰域保持嵌入)
  • LPP: Locality Preserving Projections(局部保留投影)
  • ISOMAP: Isometric Mapping(等距映射)
  • LLE: Locally Linear Embedding(局部線性嵌入)
  • LE: Laplacian Eigenmap(拉普拉斯特征映射)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM