pytorch中torch.unsqueeze()函數與np.expand_dims()


numpy.expand_dims(aaxis)

Expand the shape of an array.

Insert a new axis that will appear at the axis position in the expanded array shape.

 

Parameters:
a  array_like

Input array.

axis  int

Position in the expanded axes where the new axis is placed.

Returns:
res  ndarray

Output array. The number of dimensions is one greater than that of the input array.

 

Examples

>>> x = np.array([1,2]) >>> x.shape (2,) 

The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2)
>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis] >>> y array([[1],  [2]]) >>> y.shape (2, 1) 

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None True


 

 

torch.unsqueeze(inputdimout=None) → Tensor

Returns a new tensor with a dimension of size one inserted at the specified position.

The returned tensor shares the same underlying data with this tensor.

dim value within the range [-input.dim() 1, input.dim() 1) can be used. Negative dimwill correspond to unsqueeze() applied at dim = dim input.dim() 1.

Parameters:
  • input (Tensor) – the input tensor
  • dim (int) – the index at which to insert the singleton dimension
  • out (Tensoroptional) – the output tensor

Example:

>>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1],  [ 2],  [ 3],  [ 4]])
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM