Expand the shape of an array.
Insert a new axis that will appear at the axis position in the expanded array shape.
| Parameters: |
|
|---|---|
| Returns: |
|
Examples
>>> x = np.array([1,2]) >>> x.shape (2,)
The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:
>>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2)
>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis] >>> y array([[1], [2]]) >>> y.shape (2, 1)
Note that some examples may use None instead of np.newaxis. These are the same objects:
>>> np.newaxis is None True
torch.unsqueeze(input, dim, out=None) → Tensor
Returns a new tensor with a dimension of size one inserted at the specified position.
The returned tensor shares the same underlying data with this tensor.
A dim value within the range [-input.dim() - 1, input.dim() + 1) can be used. Negative dimwill correspond to unsqueeze() applied at dim = dim + input.dim() + 1.
| Parameters: |
|---|
Example:
>>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1], [ 2], [ 3], [ 4]])
