預測房價:回歸問題
回歸問題預測結果為連續值,而不是離散的類別。
波士頓房價數據集
通過20世紀70年代波士頓郊區房價數據集,預測平均房價;數據集的特征包括犯罪率、稅率等信息。數據集只有506條記錄,划分成404的訓練集和102的測試集。每個記錄的特征取值范圍各不相同。比如,有0~1,1~12以及0~100的等等。
加載數據集
from keras.datasets import boston_housing
(train_data,train_targets),(test_data,test_targets) = boston_housing.load_data()
訓練集形狀:
>>> train_data.shape
(404, 13)
測試集形狀:
>>> test_data.shape
(102, 13)
訓練集404條,測試集102條;每條記錄13個數值特征。
房價單位為1000美元。
>>> train_targets
[ 15.2, 42.3, 50. ...19.4,19.4,29.1]
房價范圍在$10,000到$50,000。
准備數據
因為數據各個特征取值范圍各不相同,不能直接送到神經網絡模型中進行處理。盡管網絡模型能適應數據的多樣性,但是相應的學習過程變得非常困難。一種常見的數據處理方法是特征歸一化normalization---減均值除以標准差;數據0中心化,方差為1.
mean = train_data.mean(axis=0)
train_data -= mean # 減去均值
std = train_data.std(axis=0) # 特征標准差
train_data /= std
test_data -= mean #測試集處理:使用訓練集的均值和標准差;不用重新計算
test_data /= std
模型構建
由於數據集數據量過小,模型也不能太復雜,否則容易發生過擬合。
from keras import models
from keras import layers
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
模型的最后一層只有一個神經元,沒有激活函數--相當於一個線性層。這種處理方法常用在單標量回歸問題中。使用激活函數將會限制輸出結果的范圍,比如使用sigmoid激活函數,輸出結果在0~1之間。這里,因為最后一層只是一個線性層,模型的輸出結果可能是任意值。
模型的損失函數為mse均方誤差。監測的指標為mean absolute error(MAE)平均絕對誤差---兩個結果之間差的絕對值。
K折交叉驗證
當調整模型參數時,為了評估模型,我們通常將數據集分成訓練集和驗證集。但是當數據量過小時,驗證集數目也變得很小,導致驗證集上的評估結果相互之間差異性很大---與訓練集和測試集的划分結果相關。評估結果可信度不高。
最好的評估方式是采用K折交叉驗證--將數據集分成K份(K=4或5),實例化K個模型,每個模型在K-1份數據上進行訓練,在1份數據上進行評估,最后用K次評估分數的平均值做最后的評估結果。
import numpy as np
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print('processing fold #',i)
val_data = train_data[i*num_val_samples : (i+1)*num_val_samples] # 划分出驗證集部分
val_targets = train_targets[i*num_val_samples : (i+1)*num_val_samples]
partial_train_data = np.concatenate([train_data[:i*num_val_samples],train_data[(i+1)* num_val_samples:] ],axis=0) # 將訓練集拼接到一起
partial_train_targets = np.concatenate([train_targets[:i*num_val_samples],train_targets[(i+1)* num_val_samples:] ],axis=0)
model = build_model()
model.fit(partial_train_data,partial_train_targets,epochs=num_epochs,batch_size=16,verbose=0)#模型訓練silent模型
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) # 驗證集上評估
all_scores.append(val_mae)
模型訓練
model = build_model()
model.fit(train_data, train_targets,epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)# score 2.5532484335057877
小結
- 回歸問題:損失函數通常為MSE均方誤差;
- 模型評估監測指標通常為MAE(mean absolute error);
- 當數據取值范圍不一致時,需要對特征進行預處理;
- 數據量小時,可以采用K折驗證來衡量模型;
- 數據量小時,模型復雜度也應該相應的簡單,可以避免模型過擬合。