minn算法代碼
算法原理
訓練序列結構 T=[B B -B -B],其中B表示由長度為N/4的復偽隨機序列PN,ifft變換得到的符號序列
(原文解釋):B represent samples of length L=N/4 genereated by N/4 point IFFT of \(N_u/4\) length modulated data of a PN sequence.也就是說B是一個長度為N/4的序列,其通過對一個PN序列進行編碼后,通過IFFT獲得
\(\bigstar\)minn:為了消除Schmidl算法出現的平頂影響,minn等人改變了訓練隊列的結構,並重新設計了一種新的同步度量函數,雖然成功消除了schmidl算法的平頂效應,使得同步自相關峰變得尖銳,提高了定時同步估計的精度和可靠性,但是該向相關峰還不夠尖銳,而且在同步度量函數曲線主峰兩邊出現了多個副峰,在信道環境惡劣的條件下,也即低信噪比條件下,定時同步估計將受到較大的影響。
參考文獻
Minn H ,Zeng M,BHARGAVA V K.On timing offser estimation for OFDM systems[J].IEEE Commun.Lett.2000,4(7):242-244.
\[M(d)=\frac{\left | P(d) \right |}{R^{2}(d)}^{2} \]
\[P(d)=\sum_{k=0}^{1}\sum_{m=0}^{N/4 -1}r^{*}(d+m+\frac{Nk}{2}) r(d+m+\frac{N}{4} + \frac{Nk}{2}) \]
\[R(d)=\sum_{k=0}^{1}\sum_{m=0}^{N/4-1}\left | r(d+m+\frac{N}{4} + \frac{Nk}{2}) \right |^{2} \]
所求得的d對應的是訓練序列(不包含循環前綴)的開始位置。
%********************schmidl algorithm*******************
%Example:
% If
% X = rand(2,3,4);
% then
% d = size(X) returns d = [2 3 4]
% [m1,m2,m3,m4] = size(X) returns m1 = 2, m2 = 3, m3 = 4, m4 = 1
% [m,n] = size(X) returns m = 2, n = 12
% m2 = size(X,2) returns m2 = 3
%close all;
clear all;
clc;
%參數定義
N=256; %FFT/IFFT 變換的點數或者子載波個數(Nu=N)
Ng=N/8; %循環前綴的長度 (保護間隔的長度)
Ns=Ng+N; %包括循環前綴的符號長度
%************利用查表法生成復隨機序列**********************
QAMTable=[7+7i,-7+7i,-7-7i,7-7i];
buf=QAMTable(randi([0,3],N/2,1)+1); %加1是為了下標可能是0不合法
%*************在奇數子載波的位置插入零*********************zj:是偶數吧?
x=zeros(N/2,1);
index = 1;
for n=1:2:N/2
x(n)=buf(index);
index=index+1;
end;
%**************利用IFFT變換生成Schmidl訓練符號***************
sch = ifft(x); %[A A]的形式
sch2=[sch;(-1).*sch];
%*****************添加一個空符號以及一個后綴符號*************
src = QAMTable(randi([0,3],N,1)+1).';
sym = ifft(src);
sig =[zeros(N,1) sch2 sym];
%**********************添加循環前綴*************************
tx =[sig(N - Ng +1:N,:);sig];
%***********************經過信道***************************
recv = reshape(tx,1,size(tx,1)*size(tx,2)); %size的1表示行,2表示列,從%前向后數,超過了為1
%recv1 = awgn(recv,1,'measured');
%recv2 = awgn(recv,5,'measured');
%recv3 = awgn(recv,10,'measured');
%*****************計算符號定時*****************************
P=zeros(1,2*Ns);
R=zeros(1,2*Ns);
%P1=zeros(1,2*Ns);
%R1=zeros(1,2*Ns);
P2=zeros(1,2*Ns);
R2=zeros(1,2*Ns);
%P3=zeros(1,2*Ns);
%R3=zeros(1,2*Ns);
for d = Ns/2+1:1:2*Ns
for k=1:2
for m=0:1:N/4-1
P(d-Ns/2) = P(d-Ns/2) + conj(recv(d+m+(k-1)*N/2))*recv(d+N/4+(k-1)*N/2+m);
R(d-Ns/2) = R(d-Ns/2) + power(abs(recv(d+N/4+(k-1)*N/2+m)),2);
%P1(d-Ns/2) = P1(d-Ns/2) + conj(recv1(d+m))*recv1(d+N/2+m);
%R1(d-Ns/2) = R1(d-Ns/2) + power(abs(recv1(d+N/2+m)),2);
%P2(d-Ns/2) = P2(d-Ns/2) + conj(recv2(d+m))*recv2(d+N/2+m);
%R2(d-Ns/2) = R2(d-Ns/2) + power(abs(recv2(d+N/2+m)),2);
% P3(d-Ns/2) = P3(d-Ns/2) + conj(recv3(d+m))*recv3(d+N/2+m);
% R3(d-Ns/2) = R3(d-Ns/2) + power(abs(recv3(d+N/2+m)),2);
end
end
end
M=power(abs(P),2)./power(abs(R),2);
%M1=power(abs(P1),2)./power(abs(R1),2);
%M2=power(abs(P2),2)./power(abs(R2),2);
%M3=power(abs(P3),2)./power(abs(R3),2);
[a b]=max(M)
%**********************繪圖******************************
figure('Color','w');
d=1:1:400;
figure(1);
plot(d,M(d));
grid on;
axis([0,400,0,1.1]);
title('minn algorithm');
xlabel('Time (sample)');
ylabel('Timing Metric');
%legend('no noise','SNR=1dB','SNR=5dB','SNR=10dB');
hold on;