問題1:找硬幣,換錢的方法
輸入:
- penny數組代表所有貨幣的面值,正數不重復
- aim小於等於1000,代表要找的錢
輸出:
換錢的方法總數
解法1:經典dp,空間復雜度O(n*aim)
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
if (penny.empty()||n == 0)
return 0;
vector<vector<int> > dp(n,vector<int>(aim+1)); //二維數組dp
for (int i = 0;i < n;i++) {
dp[i][0] = 1;
}
for (int j = 1;j < aim+1;j++) {
dp[0][j] = j%penny[0] == 0?1:0; //只需要算dp[0][j]
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < aim+1;j++) {
dp[i][j] = (j-penny[i]) >= 0?(dp[i-1][j] + dp[i][j-penny[i]]):dp[i-1][j]; //這是關鍵,不用管penny【i】到底使用了幾次,直接減去1次使用就好
}
}
return dp[n-1][aim];
}
};
解法2:與上面的問題一樣,只不過在求dp時只使用1維數組來做;使用迭代,時間復雜度一樣:
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
vector<int> dp(aim + 1);
for (int i = 0; i <= aim; i++)
if (i % penny[0] == 0)
dp[i] = 1;
for (int i = 1; i < n; i++)
for (int j = 1; j <= aim; j++)
if ( j >= penny[i]) //條件,如果不滿足就直接等於上輪的結果,不用做修改
dp[j] += dp[j - penny[i]];
return dp[aim];
}
};
問題2:跳台階問題:
其實是斐波那契問題,f(n)=f(n-1)+f(n-2)
#include <iostream>
using namespace std;
int main(){
int step;
while(cin>>step){
vector<int> dp(2,1); //初始化賦值
dp[1]=2;
int temp;
for(int i=3;i<=step;i++){
temp=dp[0];
dp[0]=dp[1];
dp[1]=dp[1]+temp;
}
if(step==1) dp[1]=1;;
cout<<dp[1]<<endl;
}
return 0;
}
問題3:走矩陣,求路勁最小和,或者是求整個路徑
- n×m的map,則 f(n,m)=min(f(n-1,m),f(n,m-1))+map[n][m];
- 由於這里和問題1類似,可以只用到一個一維數組求解;
class MinimumPath {
public:
int getMin(vector<vector<int> > map, int n, int m) {
vector<int> dp(m,0);
dp[0] = map[0][0];
for (int i = 1,j = 0;i < m;i++,j++) {
dp[i] = map[0][i]+dp[j];
}
for (int i = 1;i < n;i++) {
dp[0] += map[i][0]; //不能忘了dp[0]的更新
for (int j = 1;j < m;j++) {
dp[j] = min(dp[j],dp[j-1])+map[i][j]; //如果求路徑,則在這里記錄,需要額外存儲空間
}
}
return dp[m-1];
}
};
問題4:最長上升子序列問題(LIS)
解法:O(N方)用dp數組的dp[i]記錄下以A[i]結尾的遞增子序列中最長的長度,計算dp[i+1]時,遍歷A[0~i]找到比A[i+1]小的元素,再比較與這些元素對應的dp數組中的值,找到最大的一個再加1,賦值給dp[i+1]。
class LongestIncreasingSubsequence {
public:
int getLIS(vector<int> A, int n) {
if (A.empty()||n == 0)
return 0;
vector<int> dp(n,0);
dp[0] = 1;
int resMax = 0;
for (int i = 1;i < n;i++) {
int tempMax = 0;
for (int j = 0;j < i;j++) {
if (A[i] > A[j])
tempMax = max(tempMax,dp[j]);
}
dp[i] = ++tempMax;
resMax = max(resMax,dp[i]); //記錄最大的上升子序列長度,因為當前i可能並不在最長上升子序列中
}
return resMax;
}
};
- 如上的實現復雜度為N方,可以增加歸納的假設,增加b[k]存儲長度為k最長子序列最小結尾元素,那么可以利用二分查找,使用logn查找到插入點,對於每次比較,要么直接比較b【k】比它大直接k+1,更新b【k+1】,要么二分查找到位置,更新b【j】,所以最終復雜度為nlogn(如果數據量大的話,使用該算法較好)
- 參考 https://blog.csdn.net/netown_ethereal/article/details/24010381

問題5:最長公共子序列長度(LCS)


上圖可以看出使用了斜側的比較,所以不能再使用1維數組了
class LCS {
public:
int findLCS(string A, int n, string B, int m) {
if (A.empty()||n==0||B.empty()||m==0)
return 0;
vector<vector<int> > dp(n,vector<int>(m));
//下面是兩個for的初始化,當出現第一個相等的時,后面的都直接賦值為1;
for (int i = 0;i < m;i++) {
if (A[0] == B[i]) {
for (int j = i;j < m;j++)
dp[0][j] = 1;
break ;
}
}
for (int i = 0;i < n;i++) {
if (B[0] == A[i]) {
for (int j = i;j < n;j++)
dp[j][0] = 1;
break ;
}
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < m;j++) {
if (A[i] == B[j])
dp[i][j] = dp[i-1][j-1]+1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n-1][m-1];
}
};
上面的方法中初始化第一行和第一列有點麻煩,增加了額外的語句,可以增加數組一行和一列來優化代碼:
class LCS {
public:
int findLCS(string A, int n, string B, int m) {
vector<vector<int> > dp(n+1,vector<int>(m+1,0));
for (int i =1;i<=n ;++i){
for (int j=1; j<=m; ++j){
if (A[i-1] == B[j-1]){
dp[i][j] = dp[i-1][j-1]+1; //第1行也可以照此直接初始化
}
else {
dp[i][j] = max( dp[i-1][j] ,dp[i][j-1]);
}
}
}
return dp[n][m];
}
};
問題6:背包
- N件物品,價值記錄在數組V,重量記錄在數組W,背包總重量最大為cap,要求總價值最大;
class Backpack {
public:
int maxValue(vector<int> w, vector<int> v, int n, int cap) {
if (w.empty()||v.empty()||n==0||cap==0)
return 0;
vector<vector<int> > dp(n,vector<int>(cap+1));
for (int j = 1;j < cap+1;j++) {
dp[0][j] = w[0] <= j?v[0]:0;
}
for (int i = 0;i < n;i++) {
dp[i][0] = 0;
}
for (int i = 1;i < n;i++) {
for (int j = 1;j < cap+1;j++) {
if (w[i] > j)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = max(dp[i-1][j],v[i]+dp[i-1][j-w[i]]); //由於該問題每個物品最多只能放1件,如果不限制個數的話,則在這里修改條件
}
}
return dp[n-1][cap];
}
};
由於沒有用到斜側的比較,所以可以使用1維的數組:
class Backpack {
public:
int maxValue(vector<int> w, vector<int> v, int n, int cap) {
if (w.empty()||v.empty()||n==0||cap==0)
return 0;
vector<int> dp(cap+1,0);
for (int i = 0;i < n;i++) {
vector<int> last(dp);
for (int j = 1;j < cap+1;j++) {
dp[j] = j < w[i]?last[j]:max(last[j],v[i]+last[j-w[i]]);
}
}
return dp[cap];
}
};
