Dijkstra Algorithm 迪克特斯拉算法--Python


迪克斯拉特算法:

1、找出代價最小的節點,即可在最短時間內到達的節點;

2、更新節點的鄰居的開銷;

3、重復這個過程,直到圖中的每個節點都這樣做了;

4、計算最終路徑。

 

'''
迪克斯特拉算法:
1、以字典的方式更新圖,包括權重
2、創建開銷字典,關鍵在於起點臨近的點開銷為實際數值,其他點為暫時未到達,開銷為無窮,隨后更新
3、創建父節點列表保存每個點的父節點,以便記錄走過的路徑
'''
from queue import LifoQueue

graph = {}
graph['start'] = {}
graph['start']['a'] = 6
graph['start']['b'] = 2
graph['a'] = {}
graph['a']['end'] = 4
graph['b'] = {}
graph['b']['a'] = 3
graph['b']['c'] = 2
graph['c'] = {}
graph['c']['end'] = 3
graph['end'] = {}
print(graph)

infinity = float('inf')
costs = {}
costs['a'] = 6
costs['b'] = 2
costs['c'] = infinity
costs['end'] = infinity

parents = {}
parents['a'] = 'start'
parents['b'] = 'start'
parents['c'] = 'b'
parents['end'] = None

processed = []

def find_lowest_cost_node(costs):
    lowest_cost = float('inf')
    lowest_cost_node = None
    for node in costs:
        cost = costs[node]
        if (cost < lowest_cost and node not in processed):
            lowest_cost = cost
            lowest_cost_node = node
    return lowest_cost_node

node = find_lowest_cost_node(costs)
while(node is not None):
    cost = costs[node]
    neighbors = graph[node]
    for n in neighbors.keys():
        new_cost = cost + neighbors[n]
        if costs[n] > new_cost:
            costs[n] = new_cost
            parents[n] = node
    processed.append(node)
    node = find_lowest_cost_node(costs)

#輸出最短路徑
p = 'end'
path = LifoQueue()
while(True):
    path.put(p)
    if(p == 'start'):
        break
    p = parents[p]

while not path.empty():
    print(path.get())

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM