pandas獲取groupby分組里最大值所在的行,獲取第一個等操作


pandas獲取groupby分組里最大值所在的行

 

 

pandas獲取groupby分組里最大值所在的行

如下面這個DataFrame,按照Mt分組,取出Count最大的那行

import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df 
  Count Mt Sp Value
0 3 s1 a 1
1 2 s1 b 2
2 5 s2 c 3
3 10 s2 d 4
4 10 s2 e 5
5 6 s3 f 6

方法1:在分組中過濾出Count最大的行

df.groupby('Mt').apply(lambda t: t[t.Count==t.Count.max()]) 
    Count Mt Sp Value
Mt          
s1 0 3 s1 a 1
s2 3 10 s2 d 4
4 10 s2 e 5
s3 5 6 s3 f 6

方法2:用transform獲取原dataframe的index,然后過濾出需要的行

print df.groupby(['Mt'])['Count'].agg(max) idx=df.groupby(['Mt'])['Count'].transform(max) print idx idx1 = idx == df['Count'] print idx1 df[idx1] 
Mt
s1     3 s2 10 s3 6 Name: Count, dtype: int64 0 3 1 3 2 10 3 10 4 10 5 6 dtype: int64 0 True 1 False 2 False 3 True 4 True 5 True dtype: bool 
  Count Mt Sp Value
0 3 s1 a 1
3 10 s2 d 4
4 10 s2 e 5
5 6 s3 f 6

上面的方法都有個問題是3、4行的值都是最大值,這樣返回了多行,如果只要返回一行呢?

方法3:idmax(舊版本pandas是argmax)

idx = df.groupby('Mt')['Count'].idxmax() print idx df.iloc[idx] 
Mt
s1    0 s2 3 s3 5 Name: Count, dtype: int64 
  Count Mt Sp Value
0 3 s1 a 1
3 10 s2 d 4
5 6 s3 f 6
df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())] 
  Count Mt Sp Value
0 3 s1 a 1
3 10 s2 d 4
5 6 s3 f 6
def using_apply(df): return (df.groupby('Mt').apply(lambda subf: subf['Value'][subf['Count'].idxmax()])) def using_idxmax_loc(df): idx = df.groupby('Mt')['Count'].idxmax() return df.loc[idx, ['Mt', 'Value']] print using_apply(df) using_idxmax_loc(df) 
Mt
s1    1 s2 4 s3 6 dtype: int64 
  Mt Value
0 s1 1
3 s2 4
5 s3 6

方法4:先排好序,然后每組取第一個

df.sort('Count', ascending=False).groupby('Mt', as_index=False).first() 
  Mt Count Sp Value
0 s1 3 a 1
1 s2 10 d 4
2 s3 6 f 6

那問題又來了,如果不是要取出最大值所在的行,比如要中間值所在的那行呢?

思路還是類似,可能具體寫法上要做一些修改,比如方法1和2要修改max算法,方法3要自己實現一個返回index的方法。 不管怎樣,groupby之后,每個分組都是一個dataframe。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM