主要內容:
- 創建數據表
- 查看數據表
- 數據表索引、選取部分數據
- 通過標簽選取
.loc
- 多重索引選取
- 位置選取
.iloc
- 布爾索引
- 通過標簽選取
Object Creation 新建數據
- 用list建series序列
In [73]: s = pd.Series([1,3,5,np.nan,6,8]) In [74]: s Out[74]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
- 用numpy array建dataframe
In [75]: dates = pd.date_range('20130101', periods=6) In [76]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) In [77]: df Out[77]: A B C D 2013-01-01 -0.411674 0.273549 0.629843 1.881497 2013-01-02 1.240512 0.970725 0.033099 1.553420 2013-01-03 -0.544326 0.545738 -1.325810 0.130738 2013-01-04 1.044803 -0.117151 0.874583 2.278227 2013-01-05 -2.194728 -2.536257 0.478644 0.057728 2013-01-06 -1.092031 1.249952 1.598761 -0.153423 #---pd.date_range?--- In [115]: pd.date_range(start='12/31/2011', end='12/31/2013', freq='A') Out[115]: DatetimeIndex(['2011-12-31', '2012-12-31', '2013-12-31'], dtype='datetime64[ns]', freq='A-DEC')
- 用dictionary
In [78]: df2 = pd.DataFrame({ 'A' : 1., ...: 'B' : pd.Timestamp('20130102'), ...: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), ...: 'D' : np.array([3] * 4,dtype='int32'), ...: 'E' : pd.Categorical(["test","train","test","train"]), ...: 'F' : 'foo' }) ...: df2 ...: Out[78]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo In [80]: df2.dtypes Out[80]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
在ipython中可以使用<tab>鍵進行自動補充,它會列出數據對象可以執行的操作。
查看數據
df.head() df.tail(3) df.index df.columns #返回一個這樣的東西:pandas.indexes.numeric.Int64Index df.values #提取出數據框的數值,返回一個array
數據選取
建議 使用pandas的數據選取方法:.at, .iat, .loc, .iloc, .ix. 這些更高效。
df['A'] # 選取某一列,返回一個Series,== df.A,【只能選某一列,不能用":"多選。】 df[0:3] # 選行 df['20130102':'20130104']
-
通過標簽label選取,.loc
用.loc[]選取數據時,方括號里對應的是:[行,列](逗號分隔),如果只有一個值,默認是行。可以用“:”。
In [82]: df Out[82]: A B C D 2013-01-01 -0.411674 0.273549 0.629843 1.881497 2013-01-02 1.240512 0.970725 0.033099 1.553420 2013-01-03 -0.544326 0.545738 -1.325810 0.130738 2013-01-04 1.044803 -0.117151 0.874583 2.278227 2013-01-05 -2.194728 -2.536257 0.478644 0.057728 2013-01-06 -1.092031 1.249952 1.598761 -0.153423 In [83]: df.loc[dates[0]] # 作為index的日期列叫dates Out[83]: A -0.411674 B 0.273549 C 0.629843 D 1.881497 Name: 2013-01-01 00:00:00, dtype: float64 #---對多個維度軸axis進行選取--- In [84]: df.loc['20130102':'20130104',['A','B']] Out[84]: A B 2013-01-02 1.240512 0.970725 2013-01-03 -0.544326 0.545738 2013-01-04 1.044803 -0.117151 #---選取某個數值--- In [85]: df.loc[dates[0],'A'] Out[85]: -0.41167416696608039 In [86]: df.at[dates[0],'A'] # 更高效的做法 Out[86]: -0.41167416696608039
-
多重索引的選取
index有多個維度
#這里有一個多重索引 MultiIndex(levels=[[1, 2, 3], ['count', 'mean', 'std', 'min', '5%', '10%', '15.0%', '20%', '25%', '30.0%', '35%', '40%', '45%', '50%', '55.0%', '60.0%', '65%', '70%', '75%', '80%', '85.0%', '90%', '95%', 'max']], labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]], names=['label_1', None]) df[columnName] #選某一列,或多列(":",[,,,]) df.loc[:,columnName] #選某一列,或多列(":",[,,,]) df.loc[1,columnName] #可以直接用最外層的索引 df.loc[(1,'std'),columnName] #多層索引要用tuple。選多行用":"連接tuple。 df.loc[[(1,'std'),(2,"count")],'feature_001']
-
用位置選取:.iloc
.lic[],位置索引,方括號里是整數值。同樣的用“,”隔開行列。
In [93]: df.iloc[3] Out[93]: A 1.044803 B -0.117151 C 0.874583 D 2.278227 Name: 2013-01-04 00:00:00, dtype: float64 In [94]: df.iloc[3:5,0:2] Out[94]: A B 2013-01-04 1.044803 -0.117151 2013-01-05 -2.194728 -2.536257 In [95]: df.iat[1,1] Out[95]: 0.97072539301549565
-
**布爾索引 **Boolean Indexing
某一列大於0的數據
In [96]: df[df.A > 0] Out[96]: A B C D 2013-01-02 1.240512 0.970725 0.033099 1.553420 2013-01-04 1.044803 -0.117151 0.874583 2.278227
整體大於零的數據。小於0的為NaN
In [97]: df[df > 0] Out[97]: A B C D 2013-01-01 NaN 0.273549 0.629843 1.881497 2013-01-02 1.240512 0.970725 0.033099 1.553420 2013-01-03 NaN 0.545738 NaN 0.130738 2013-01-04 1.044803 NaN 0.874583 2.278227 2013-01-05 NaN NaN 0.478644 0.057728 2013-01-06 NaN 1.249952 1.598761 NaN
對字符型數據選取
#---isin --- In [98]: df2 = df.copy() ...: df2['E'] = ['one', 'one','two','three','four','three'] ...: df2 ...: Out[98]: A B C D E 2013-01-01 -0.411674 0.273549 0.629843 1.881497 one 2013-01-02 1.240512 0.970725 0.033099 1.553420 one 2013-01-03 -0.544326 0.545738 -1.325810 0.130738 two 2013-01-04 1.044803 -0.117151 0.874583 2.278227 three 2013-01-05 -2.194728 -2.536257 0.478644 0.057728 four 2013-01-06 -1.092031 1.249952 1.598761 -0.153423 three In [99]: df2[df2['E'].isin(['two','four'])] Out[99]: A B C D E 2013-01-03 -0.544326 0.545738 -1.325810 0.130738 two 2013-01-05 -2.194728 -2.536257 0.478644 0.057728 four
使用布爾面具
In [107]: mask = df2["A"] >0 In [108]: df3 = df2[mask] In [109]: df3 Out[109]: A B C D E 2013-01-02 1.240512 0.970725 0.033099 1.553420 ONE 2013-01-04 1.044803 -0.117151 0.874583 2.278227 THREE # 查看無重復的值:.unique() In [101]: df2.loc[:,"E"].unique() Out[101]: array(['one', 'two', 'three', 'four'], dtype=object)