輪詢
算法思想:在服務器的處理能力相同,請求處理量差異不大的情況下,可以按照負載服務器的順序均勻的分配給每台服務器,這種均勻分配請的方式成為輪詢。
代碼實例:
public static Map<String, Integer> serverWeightMap = new HashMap<String,Integer>();
public static Integer pos = 0;
public NewTest(String[] args) throws Exception, Exception{
serverWeightMap.put("192.168.121.12", 1);
serverWeightMap.put("192.168.121.13", 1);
serverWeightMap.put("192.168.121.14", 4);
serverWeightMap.put("192.168.121.15", 1);
serverWeightMap.put("192.168.121.16", 1);
serverWeightMap.put("192.168.121.17", 3);
serverWeightMap.put("192.168.121.18", 1);
serverWeightMap.put("192.168.121.19", 2);
serverWeightMap.put("192.168.121.20", 1);
serverWeightMap.put("192.168.121.21", 1);
serverWeightMap.put("192.168.121.22", 1);
}
//輪詢法
public static String testRoundRobin() throws Exception, IOException {
Map<String, Integer> serverMap = new HashMap<String,Integer>();
serverMap.putAll(serverWeightMap);
Set<String> keySet = serverMap.keySet();
ArrayList<String> list = new ArrayList<String>();
list.addAll(keySet);
String server = "";
synchronized (pos) {
if (pos>=keySet.size()) {
pos=0;
}
server = list.get(pos);
pos++;
}
return server;
}
nginx配置:
upstream tomcats {
server 192.168.0.100:8080;
server 192.168.0.101:8080;
}
隨機
算法思想:客戶端的請求到達后台,負載策略會隨機性的從負載ip列表中獲取一個服務器對請求進行處理。
代碼實例:
//隨機算法
public static String testRandom(){
String server = "";
Map<String, Integer> serverMap = new HashMap<String,Integer>();
serverMap.putAll(serverWeightMap);
Set<String> keySet = serverMap.keySet();
ArrayList<String> list = new ArrayList<String>();
list.addAll(keySet);
Random random = new Random();
int randomip = random.nextInt(keySet.size());
server = list.get(randomip);
return server;
}
加權輪詢
算法思想:設置一個列表用來維護負載ip,按照ip的權重將該ip添加到列表中多次,權重是幾就要添加幾次,客戶端的請求會按照順序分配給ip列表中的某一個ip。
代碼實例:
public static String testWeightRoundRobin(){
String server = "";
Map<String, Integer> serverMap = new HashMap<String,Integer>();
serverMap.putAll(serverWeightMap);
Set<String> keySet = serverMap.keySet();
Iterator<String> iterator = keySet.iterator();
ArrayList<String> list = new ArrayList<String>();
while(iterator.hasNext()){
String ip = iterator.next();
Integer weight = serverMap.get(ip);
for(int i=0;i<weight;i++){
list.add(ip);
}
}
synchronized (pos) {
if (pos>=list.size()) {
pos=0;
}
server = list.get(pos);
pos++;
}
return server;
}
nginx配置:
upstream back_opencache {
server 10.159.39.136:12082 weight=2 max_fails=3 fail_timeout=10s;
server 10.159.39.137:12082 weight=2 max_fails=3 fail_timeout=10s;
}
加權隨機
算法思想:按照每個負載ip的權重來設置在ip列表中出現的概率,比重越大概率越大,同時在客戶端請求到達負載時,首先要獲取一個隨機數,通過隨機數來獲取負載ip列表中的敷在服務器,權重越大獲取到的概率也會越大。。
代碼實例:
public static String testWeightRandom() {
String server = "";
Map<String, Integer> serverMap = new HashMap<String,Integer>();
serverMap.putAll(serverWeightMap);
Set<String> keySet = serverMap.keySet();
ArrayList<String> list = new ArrayList<String>();
Iterator<String> iterator = keySet.iterator();
while(iterator.hasNext()){
String ip = iterator.next();
Integer weight = serverMap.get(ip);
for(int i=0;i<weight;i++){
list.add(ip);
}
}
Random random = new Random();
int randomip = random.nextInt(list.size());
server = list.get(randomip);
return server;
}
哈希一致
算法思想:在客戶端發送請求時,服務器會判斷客戶端的ip的hash值,將取到的hash值與負載服務器的總數取模,按照模值獲取負載ip列表中的服務器。
代碼實例:
public static String testConsumerHash(String ip){
String server = "";
Map<String, Integer> serverMap = new HashMap<String,Integer>();
serverMap.putAll(serverWeightMap);
Set<String> keySet = serverMap.keySet();
ArrayList<String> list = new ArrayList<String>();
int hashCode = ip.hashCode();
int serverPos = hashCode%list.size();
server = list.get(serverPos);
return server;
}
nginx配置:
upstream back_openfacade {
ip_hash;
server 10.159.39.136:12083;
server 10.159.39.137:12083;
}
最小連接數
即使后端機器的性能和負載一樣,不同客戶端請求復雜度不一樣導致處理時間也不一樣。最小連接數法根據后端服務器當前的連接數情況,動態地選取其中積壓連接數最小的一台服務器來處理當前的請求,盡可能提高后端服務器的利用效率,合理地將請求分流到每一台服務器。
nginx配置:
upstream back_opencache {
least_conn;
server 10.159.39.136:12082 weight=2 max_fails=3 fail_timeout=10s;
server 10.159.39.137:12082 weight=2 max_fails=3 fail_timeout=10s;
}
