一:卷積神經網絡的搭建
class NetG(nn.Module): ''' 生成器定義 ''' def __init__(self, opt): super(NetG, self).__init__() ngf = opt.ngf # 生成器feature map數 self.maina = nn.Sequential( # 輸入是一個nz維度的噪聲,我們可以認為它是一個1*1*nz的feature map nn.ConvTranspose2d(opt.nz, ngf * 16, 4, 1, 0, bias=False), #noises = t.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std) nn.BatchNorm2d(ngf * 16), nn.ReLU(True), # 上一步的輸出形狀:(ngf*8) x 4 x 4 # nn.ConvTranspose2d(ngf * 16, ngf * 10, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 10), nn.ReLU(True), # # # 上一步的輸出形狀: (ngf*4) x 8 x 8 # # # nn.ConvTranspose2d(ngf * 10, ngf * 8, 4, 3, 1, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # # # 上一步的輸出形狀: (ngf*2) x 16 x 16 # # nn.ConvTranspose2d(ngf * 8, ngf*8, 4, 3, 1, bias=False), nn.BatchNorm2d(ngf*8), nn.ReLU(True), # # # 上一步的輸出形狀:(ngf) x 32 x 32 nn.ConvTranspose2d(ngf * 8, ngf * 6, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 6), nn.ReLU(True), # # nn.ConvTranspose2d(ngf * 6, ngf , 4, 1, 1, bias=False), nn.BatchNorm2d(ngf ), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 5, 3, 1, bias=False), nn.Tanh() # 輸出范圍 -1~1 故而采用Tanh # 輸出形狀:3 x 96 x 96 ) def forward(self, input): return self.maina(input)
class NetD(nn.Module): ''' 判別器定義 ''' def __init__(self, opt): super(NetD, self).__init__() ndf = opt.ndf self.main = nn.Sequential( # 輸入 3 x 96 x 96 nn.Conv2d(3, ndf, 5, 3, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # 輸出 (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 6, 4, 1, 1, bias=False), nn.BatchNorm2d(ndf * 6), nn.LeakyReLU(0.2, inplace=True), # 輸出 (ndf*2) x 16 x 16 # nn.Conv2d(ndf * 6, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # # 輸出 (ndf*4) x 8 x 8 # nn.Conv2d(ndf * 8, ndf * 8, 4, 3, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, ndf * 10, 4, 3, 1, bias=False), nn.BatchNorm2d(ndf * 10), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 10, ndf * 16, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 16), nn.LeakyReLU(0.2, inplace=True), # 輸出 (ndf*8) x 4 x 4 # nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=False), nn.Sigmoid() # 輸出一個數(概率) ) def forward(self, input): return self.main(input).view(-1)
訓練后生成的圖片