思路:在數據上選擇一條直線y=Wx+b,在這條直線上附件隨機生成一些數據點如下圖,讓TensorFlow建立回歸模型,去學習什么樣的W和b能更好去擬合這些數據點。
1)隨機生成1000個數據點,圍繞在y=0.1x+0.3 周圍,設置W=0.1,b=0.3,屆時看構建的模型是否能學習到w和b的值。
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points=1000 vectors_set=[] for i in range(num_points): x1=np.random.normal(0.0,0.55) #橫坐標,進行隨機高斯處理化,以0為均值,以0.55為標准差 y1=x1*0.1+0.3+np.random.normal(0.0,0.03) #縱坐標,數據點在y1=x1*0.1+0.3上小范圍浮動 vectors_set.append([x1,y1]) x_data=[v[0] for v in vectors_set] y_data=[v[1] for v in vectors_set] plt.scatter(x_data,y_data,c='r') plt.show()
構造數據如下圖
2)構造線性回歸模型,學習上面數據圖是符合一個怎么樣的W和b
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W') # 生成1維的W矩陣,取值是[-1,1]之間的隨機數 b = tf.Variable(tf.zeros([1]), name='b') # 生成1維的b矩陣,初始值是0 y = W * x_data + b # 經過計算得出預估值y loss = tf.reduce_mean(tf.square(y - y_data), name='loss') # 以預估值y和實際值y_data之間的均方誤差作為損失 optimizer = tf.train.GradientDescentOptimizer(0.5) # 采用梯度下降法來優化參數 學習率為0.5 train = optimizer.minimize(loss, name='train') # 訓練的過程就是最小化這個誤差值 sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 初始化的W和b是多少 for step in range(20): # 執行20次訓練 sess.run(train) print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 輸出訓練好的W和b
打印每一次結果,如下圖,隨着迭代進行,訓練的W、b越來越接近0.1、0.3,說明構建的回歸模型確實學習到了之間建立的數據的規則。loss一開始很大,后來慢慢變小,說明模型表達效果隨着迭代越來越好。
W = [-0.9676645] b = [0.] loss = 0.45196822
W = [-0.6281831] b = [0.29385352] loss = 0.17074569
W = [-0.39535886] b = [0.29584622] loss = 0.07962803
W = [-0.23685378] b = [0.2972129] loss = 0.03739688
W = [-0.12894464] b = [0.2981433] loss = 0.017823622
W = [-0.05548081] b = [0.29877672] loss = 0.008751821
W = [-0.00546716] b = [0.29920793] loss = 0.0045472304
W = [0.02858179] b = [0.2995015] loss = 0.0025984894
W = [0.05176209] b = [0.29970136] loss = 0.0016952885
W = [0.06754307] b = [0.29983744] loss = 0.0012766734
W = [0.07828666] b = [0.29993007] loss = 0.001082654
W = [0.08560082] b = [0.29999313] loss = 0.0009927301
W = [0.09058025] b = [0.30003607] loss = 0.0009510521
W = [0.09397022] b = [0.30006528] loss = 0.00093173544
W = [0.09627808] b = [0.3000852] loss = 0.00092278246
W = [0.09784925] b = [0.30009875] loss = 0.000918633
W = [0.09891889] b = [0.30010796] loss = 0.00091670983
W = [0.0996471] b = [0.30011424] loss = 0.0009158184
W = [0.10014286] b = [0.3001185] loss = 0.00091540517
W = [0.10048037] b = [0.30012143] loss = 0.0009152137
W = [0.10071015] b = [0.3001234] loss = 0.0009151251
注:以上內容為我學習唐宇迪老師的Tensorflow課程所做的筆記