1. 右值引用
個人認為右值引用的目的主要是為了是減少內存拷貝,優化性能。
比如下面的代碼:
String Fun() { String str = "hello world"; return str; }
str為臨時對象,然后調用Stringd的拷貝構造函數,將臨時對象的值賦值給String,這種拷貝是完全沒有必要的,如果堆內存很大,那么這個拷貝構造的代價會很大,帶來了額外的性能損耗。
為了避免鏈式對象的拷貝構造,我們可以使用右值引用拷貝的方式來實現:
MyString& operator=(MyString&& other) { cout << "MyString& operator=(const MyString&& other)" << endl; if (this != &other) { m_nLen = other.m_nLen; m_pData = other.m_pData; other.m_pData = NULL; } return *this; }
上面的代碼只是進行了指針權限的轉移,而沒有額外的性能消耗。
1.1 使用右值引用實現MyString類
#include "stdio.h" #include <string> #include <iostream> using namespace std; class MyString { public: MyString() :m_pData(NULL), m_nLen(0) { cout << "MyString()" << endl; } MyString(const char *pStr) // 允許隱式轉換 { cout << "MyString(const char *pStr)" << endl; m_nLen = strlen(pStr); CopyData(pStr); } MyString(const MyString& other) { cout << "MyString(const MyString& other)" << endl; if (!other.m_pData) { m_nLen = other.m_nLen; DeleteData(); CopyData(other.m_pData); } } MyString& operator=(const MyString& other) { cout << "MyString& operator=(const MyString& other)" << endl; if (this != &other) { m_nLen = other.m_nLen; DeleteData(); CopyData(other.m_pData); } return *this; } MyString(MyString&& other) { cout << "MyString(MyString&& other)" << endl; m_nLen = other.m_nLen; m_pData = other.m_pData; other.m_pData = NULL; } MyString& operator=(MyString&& other) { cout << "MyString& operator=(const MyString&& other)" << endl; if (this != &other) { m_nLen = other.m_nLen; m_pData = other.m_pData; other.m_pData = NULL; } return *this; } ~MyString() { DeleteData(); } private: void CopyData(const char *pData) { if (pData) { m_pData = new char[m_nLen + 1]; memcpy(m_pData, pData, m_nLen); m_pData[m_nLen] = '\0'; } } void DeleteData() { if (m_pData != NULL) { delete[] m_pData; m_pData = NULL; } } private: char *m_pData; size_t m_nLen; }; MyString Fun() { MyString str = "hello world"; return str; } void main() { MyString str1 = "hello"; MyString str2(str1); MyString str3 = Fun(); }

1.2 右值引用總結
C++11中引入了右值引用和移動語義,可以避免無謂的復制,提高了程序的性能,右值引用標記為T&&。
(1)左值和右值是獨立於它們的類型,右值引用類型可能是左值也可能是右值
(2)auto&&或函數參數類型的自動推導的T&&是一個未定的引用類型,它可能是左值引用,也可能是右值引用,取決於初始化的值類型
(3)所有的右值引用疊加到右值引用上仍然是一個右值引用,其它引用疊加都為坐值引用,當T&&為模版參數時,輸入左值,它會變為左值引用,輸入右值則變為具名的右值引用
(4)編譯器會將已命名的右值引用視為左值,而將未命名的右值視為右值
2. move語義
我們知道移動語義是通過右值引用來匹配臨時值的,那么,普通的左值是否也能借組移動語義來優化性能呢?C++11為了解決這個問題,提供了std::move()方法來將左值轉換為右值,從而方便應用移動語義。move是將對象的狀態或者所有權從一個對象轉移到另一個對象,只是轉義,沒有內存拷貝。
MyString str1 = "hello";
MyString str2(str1);
MyString str3 = Fun();
MyString str4 = move(str2);

3. forward
forward將左值轉換為右值:
MyString str1 = "hello"; MyString str2(str1); MyString str3 = Fun(); MyString str4 = move(str2); MyString str5(forward<MyString>(str3));

4. 綜合示例
#include "stdio.h" #include<iostream> #include<vector> using namespace std; class A { public: A() :m_ptr(NULL), m_nSize(0){} A(int *ptr, int nSize) { m_nSize = nSize; m_ptr = new int[nSize]; if (m_ptr) { memcpy(m_ptr, ptr, sizeof(sizeof(int) * nSize)); } } A(const A& other) // 拷貝構造函數實現深拷貝 { m_nSize = other.m_nSize; if (other.m_ptr) { delete[] m_ptr; m_ptr = new int[m_nSize]; memcpy(m_ptr, other.m_ptr, sizeof(sizeof(int)* m_nSize)); } else { m_ptr = NULL; } cout << "A(const int &i)" << endl; } // 右值應用構造函數 A(A &&other) { m_ptr = NULL; m_nSize = other.m_nSize; if (other.m_ptr) { m_ptr = move(other.m_ptr); // 移動語義 other.m_ptr = NULL; } } ~A() { if (m_ptr) { delete[] m_ptr; m_ptr = NULL; } } void deleteptr() { if (m_ptr) { delete[] m_ptr; m_ptr = NULL; } } int *m_ptr; int m_nSize; }; void main() { int arr[] = { 1, 2, 3 }; A a(arr, sizeof(arr)/sizeof(arr[0])); cout << "m_ptr in a Addr: 0x" << a.m_ptr << endl; A b(a); cout << "m_ptr in b Addr: 0x" << b.m_ptr << endl; b.deleteptr(); A c(std::forward<A>(a)); // 完美轉換 cout << "m_ptr in c Addr: 0x" << c.m_ptr << endl; c.deleteptr(); vector<int> vect{ 1, 2, 3, 4, 5 }; cout << "before move vect size: " << vect.size() << endl; vector<int> vect1 = move(vect); cout << "after move vect size: " << vect.size() << endl; cout << "new vect1 size: " << vect1.size() << endl; }

