一、TensorFlow模型保存和提取方法
1. TensorFlow通過tf.train.Saver類實現神經網絡模型的保存和提取。tf.train.Saver對象saver的save方法將TensorFlow模型保存到指定路徑中,saver.save(sess,"Model/model.ckpt"),實際在這個文件目錄下會生成4個人文件:

checkpoint文件保存了一個錄下多有的模型文件列表,model.ckpt.meta保存了TensorFlow計算圖的結構信息,model.ckpt保存每個變量的取值,此處文件名的寫入方式會因不同參數的設置而不同,但加載restore時的文件路徑名是以checkpoint文件中的“model_checkpoint_path”值決定的。
2. 加載這個已保存的TensorFlow模型的方法是saver.restore(sess,"./Model/model.ckpt"),加載模型的代碼中也要定義TensorFlow計算圖上的所有運算並聲明一個tf.train.Saver類,不同的是加載模型時不需要進行變量的初始化,而是將變量的取值通過保存的模型加載進來,注意加載路徑的寫法。若不希望重復定義計算圖上的運算,可直接加載已經持久化的圖,saver =tf.train.import_meta_graph("Model/model.ckpt.meta")。
3.tf.train.Saver類也支持在保存和加載時給變量重命名,聲明Saver類對象的時候使用一個字典dict重命名變量即可,{"已保存的變量的名稱name": 重命名變量名},saver = tf.train.Saver({"v1":u1, "v2": u2})即原來名稱name為v1的變量現在加載到變量u1(名稱name為other-v1)中。
4. 上一條做的目的之一就是方便使用變量的滑動平均值。如果在加載模型時直接將影子變量映射到變量自身,則在使用訓練好的模型時就不需要再調用函數來獲取變量的滑動平均值了。載入時,聲明Saver類對象時通過一個字典將滑動平均值直接加載到新的變量中,saver = tf.train.Saver({"v/ExponentialMovingAverage": v}),另通過tf.train.ExponentialMovingAverage的variables_to_restore()函數獲取變量重命名字典。
此外,通過convert_variables_to_constants函數將計算圖中的變量及其取值通過常量的方式保存於一個文件中。
二、TensorFlow程序實現
-
-
-
-
-
-
-
- import tensorflow as tf
-
- v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")
- v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2")
- result = v1 + v2
-
- saver = tf.train.Saver()
-
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- saver.save(sess, "Model/model.ckpt")
-
-
-
-
- import tensorflow as tf
-
- v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")
- v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2")
- result = v1 + v2
-
- saver = tf.train.Saver()
-
- with tf.Session() as sess:
- saver.restore(sess, "./Model/model.ckpt")
- print(sess.run(result))
-
-
-
-
- import tensorflow as tf
-
- saver = tf.train.import_meta_graph("Model/model.ckpt.meta")
-
- with tf.Session() as sess:
- saver.restore(sess, "./Model/model.ckpt")
- print(sess.run(tf.get_default_graph().get_tensor_by_name("add:0")))
-
-
-
-
- import tensorflow as tf
-
-
- u1 = tf.Variable(tf.constant(1.0, shape=[1]), name="other-v1")
- u2 = tf.Variable(tf.constant(2.0, shape=[1]), name="other-v2")
- result = u1 + u2
-
-
-
-
- saver = tf.train.Saver({"v1": u1, "v2": u2})
-
- with tf.Session() as sess:
- saver.restore(sess, "./Model/model.ckpt")
- print(sess.run(result))
-
-
-
-
- import tensorflow as tf
-
- v = tf.Variable(0, dtype=tf.float32, name="v")
- for variables in tf.global_variables():
- print(variables.name)
-
- ema = tf.train.ExponentialMovingAverage(0.99)
- maintain_averages_op = ema.apply(tf.global_variables())
- for variables in tf.global_variables():
- print(variables.name)
-
-
- saver = tf.train.Saver()
-
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- sess.run(tf.assign(v, 10))
- sess.run(maintain_averages_op)
- saver.save(sess, "Model/model_ema.ckpt")
- print(sess.run([v, ema.average(v)]))
-
-
-
-
- import tensorflow as tf
-
- v = tf.Variable(0, dtype=tf.float32, name="v")
- saver = tf.train.Saver({"v/ExponentialMovingAverage": v})
-
- with tf.Session() as sess:
- saver.restore(sess, "./Model/model_ema.ckpt")
- print(sess.run(v))
-
-
-
-
- import tensorflow as tf
-
- v = tf.Variable(0, dtype=tf.float32, name="v")
-
- ema = tf.train.ExponentialMovingAverage(0.99)
- print(ema.variables_to_restore())
-
-
-
- saver = tf.train.Saver(ema.variables_to_restore())
-
- with tf.Session() as sess:
- saver.restore(sess, "./Model/model_ema.ckpt")
- print(sess.run(v))
-
-
-
-
- import tensorflow as tf
- from tensorflow.python.framework import graph_util
-
- v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")
- v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2")
- result = v1 + v2
-
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
-
- graph_def = tf.get_default_graph().as_graph_def()
- output_graph_def = graph_util.convert_variables_to_constants(sess,
- graph_def, ['add'])
-
- with tf.gfile.GFile("Model/combined_model.pb", 'wb') as f:
- f.write(output_graph_def.SerializeToString())
-
-
-
-
- import tensorflow as tf
- from tensorflow.python.platform import gfile
-
- with tf.Session() as sess:
- model_filename = "Model/combined_model.pb"
- with gfile.FastGFile(model_filename, 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
-
- result = tf.import_graph_def(graph_def, return_elements=["add:0"])
- print(sess.run(result))