分布式鏈路跟蹤系統架構SkyWalking和zipkin和pinpoint


Net和Java基於zipkin的全鏈路追蹤

https://www.cnblogs.com/zhangs1986/p/8966051.html

 在各大廠分布式鏈路跟蹤系統架構對比 中已經介紹了幾大框架的對比,如果想用免費的可以用zipkin和pinpoint還有一個忘了介紹:SkyWalking,具體介紹可參考:https://github.com/apache/incubator-skywalking/blob/master/README_ZH.md

  由於追蹤的要求是Net平台和Java平台都要支持,對於java平台各組件都是天生的支持的,但對於net的支持找了些開源組件,發現Pinpoint和SkyWalking給出的Demo都是基於NetCore(SkyWalking可以在github上搜skywalking-netcore,Pinpoint沒有好的推薦),版本要求比較高,但不可能更改現有平台的FW框架,Zipkin有開源項目 Medidata.zipkinTracerModule 、zipkin.net、zipkin-csharp,網上依次推薦是從前到后,經過測試發現Medidata.zipkinTracerModule、zipkin.net也是用於Net Core的,在NuGet上安裝報錯。最后測試zipkin-csharp(https://github.com/openzipkin-attic/zipkin-csharp)可以成功,在NuGet中搜索Zipkin.Core,現在版本也只有一個,如下:

然后查看給出的demo中代碼:zipkin-csharp/examples/ZipkinExample/Program.cs

復制代碼
using System;
using System.Net;
using System.Threading;
using Zipkin;
using Zipkin.Tracer.Kafka;

namespace ZipkinExample
{
class Program
{
static void Main(string[] args)
{
var random = new Random();
// make sure Zipkin with Scribe client is working
//var collector = new HttpCollector(new Uri("http://localhost:9411/"));
var collector = new KafkaCollector(KafkaSettings.Default);
var traceId = new TraceHeader(traceId: (ulong)random.Next(), spanId: (ulong)random.Next());
var span = new Span(traceId, new IPEndPoint(IPAddress.Loopback, 9000), "test-service");
span.Record(Annotations.ClientSend(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ServerReceive(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ServerSend(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ClientReceive(DateTime.UtcNow));

        collector.CollectAsync(span).Wait();
    }
}

}
復制代碼
  可以看出這里的traceId和spanId都是隨機生成的,在這里推薦自己生成ID,注意是ulong型,這里毫秒數只格式化兩位(數據庫的位數20位,會超),也可以用更保險的其它方法。

復制代碼
///


/// 獲得隨機數
///

///
private static ulong getRandom()
{
var random = new Random();
return ulong.Parse(DateTime.Now.ToString("yyyyMMddHHmmssff") + random.Next(100, 999));
}
}
復制代碼
  collector這里使用Http來接收,注釋kafka的,放開http的。去掉 collector.CollectAsync(span).Wait(); 中的Wait。

Zipkin的幾個基本概念
Span:基本工作單元,一次鏈路調用(可以是RPC,DB等沒有特定的限制)創建一個span,通過一個64位ID標識它, span通過還有其他的數據,例如描述信息,時間戳,key-value對的(Annotation)tag信息,parent-id等,其中parent-id 可以表示span調用鏈路來源,通俗的理解span就是一次請求信息
Trace:類似於樹結構的Span集合,表示一條調用鏈路,存在唯一標識,即TraceId
Annotation:注解,用來記錄請求特定事件相關信息(例如時間),通常包含四個注解信息
cs - Client Start,表示客戶端發起請求
sr - Server Receive,表示服務端收到請求
ss - Server Send,表示服務端完成處理,並將結果發送給客戶端
cr - Client Received,表示客戶端獲取到服務端返回信息
BinaryAnnotation:提供一些額外信息,一般以key-value對出現

啟動服務端測試

下載 https://github.com/openzipkin/zipkin/releases 最近的穩定版 release-2.7.1的jar包,這里采用mysql的型式保存記錄,因此需要創建數據庫zipkin,創建表:

復制代碼
SET FOREIGN_KEY_CHECKS=0;


-- Table structure for zipkin_annotations


DROP TABLE IF EXISTS zipkin_annotations;
CREATE TABLE zipkin_annotations (
trace_id_high bigint(20) NOT NULL DEFAULT '0' COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
trace_id bigint(20) NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
span_id bigint(20) NOT NULL COMMENT 'coincides with zipkin_spans.id',
a_key varchar(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
a_value blob COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
a_type int(11) NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
a_timestamp bigint(20) DEFAULT NULL COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
endpoint_ipv4 int(11) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
endpoint_ipv6 binary(16) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
endpoint_port smallint(6) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
endpoint_service_name varchar(255) DEFAULT NULL COMMENT 'Null when Binary/Annotation.endpoint is null',
UNIQUE KEY trace_id_high (trace_id_high,trace_id,span_id,a_key,a_timestamp) COMMENT 'Ignore insert on duplicate',
UNIQUE KEY trace_id_high_4 (trace_id_high,trace_id,span_id,a_key,a_timestamp) COMMENT 'Ignore insert on duplicate',
KEY trace_id_high_2 (trace_id_high,trace_id,span_id) COMMENT 'for joining with zipkin_spans',
KEY trace_id_high_3 (trace_id_high,trace_id) COMMENT 'for getTraces/ByIds',
KEY endpoint_service_name (endpoint_service_name) COMMENT 'for getTraces and getServiceNames',
KEY a_type (a_type) COMMENT 'for getTraces',
KEY a_key (a_key) COMMENT 'for getTraces',
KEY trace_id (trace_id,span_id,a_key) COMMENT 'for dependencies job',
KEY trace_id_high_5 (trace_id_high,trace_id,span_id) COMMENT 'for joining with zipkin_spans',
KEY trace_id_high_6 (trace_id_high,trace_id) COMMENT 'for getTraces/ByIds',
KEY endpoint_service_name_2 (endpoint_service_name) COMMENT 'for getTraces and getServiceNames',
KEY a_type_2 (a_type) COMMENT 'for getTraces',
KEY a_key_2 (a_key) COMMENT 'for getTraces',
KEY trace_id_2 (trace_id,span_id,a_key) COMMENT 'for dependencies job'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;


-- Records of zipkin_annotations



-- Table structure for zipkin_dependencies


DROP TABLE IF EXISTS zipkin_dependencies;
CREATE TABLE zipkin_dependencies (
day date NOT NULL,
parent varchar(255) NOT NULL,
child varchar(255) NOT NULL,
call_count bigint(20) DEFAULT NULL,
error_count bigint(20) DEFAULT NULL,
UNIQUE KEY day (day,parent,child),
UNIQUE KEY day_2 (day,parent,child)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;


-- Records of zipkin_dependencies



-- Table structure for zipkin_spans


DROP TABLE IF EXISTS zipkin_spans;
CREATE TABLE zipkin_spans (
trace_id_high bigint(20) NOT NULL DEFAULT '0' COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
trace_id bigint(20) NOT NULL,
id bigint(20) NOT NULL,
name varchar(255) NOT NULL,
parent_id bigint(20) DEFAULT NULL,
debug bit(1) DEFAULT NULL,
start_ts bigint(20) DEFAULT NULL COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
duration bigint(20) DEFAULT NULL COMMENT 'Span.duration(): micros used for minDuration and maxDuration query',
UNIQUE KEY trace_id_high (trace_id_high,trace_id,id) COMMENT 'ignore insert on duplicate',
UNIQUE KEY trace_id_high_4 (trace_id_high,trace_id,id) COMMENT 'ignore insert on duplicate',
KEY trace_id_high_2 (trace_id_high,trace_id,id) COMMENT 'for joining with zipkin_annotations',
KEY trace_id_high_3 (trace_id_high,trace_id) COMMENT 'for getTracesByIds',
KEY name (name) COMMENT 'for getTraces and getSpanNames',
KEY start_ts (start_ts) COMMENT 'for getTraces ordering and range',
KEY trace_id_high_5 (trace_id_high,trace_id,id) COMMENT 'for joining with zipkin_annotations',
KEY trace_id_high_6 (trace_id_high,trace_id) COMMENT 'for getTracesByIds',
KEY name_2 (name) COMMENT 'for getTraces and getSpanNames',
KEY start_ts_2 (start_ts) COMMENT 'for getTraces ordering and range'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPRESSED;


-- Records of zipkin_spans


復制代碼
啟動

進入程序的當前目錄啟動,注意參數內容,如果想要保存到elasticsearch,需要按官方文檔更改。

java -jar zipkin-server-2.7.1.jar --STORAGE_TYPE=mysql --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=123456 --MYSQL_HOST=localhost --MYSQL_TCP_PORT=3306
啟動后看到如下內容表明成功。

啟動成功后瀏覽器訪問 http://localhost:9411/

  至此服務端和展示頁面已經啟動,不過功能還是很簡單的,具體的使用可另行查詢資料。

  這里用來測試的服務采用網友提供的 源碼:mircoservice分布式跟蹤系統(zipkin+springboot) https://github.com/dreamerkr/mircoservice,文章可參考:微服務之分布式跟蹤系統(springboot+zipkin)https://blog.csdn.net/qq_21387171/article/details/53787019

用默認配置分別運行4個客戶端服務后運行效果:

(1)分別啟動每個服務,然后訪問服務1,瀏覽器訪問(http://localhost:8081/service1/test)

(2)輸入zipkin地址,每次trace的列表

點擊其中的trace,可以看trace的樹形結構,包括每個服務所消耗的時間:

點擊每個span可以獲取延遲信息:

同時可以查看服務之間的依賴關系:

測試Net平台程序

將demo代碼改為:

復制代碼
static void Main(string[] args)
{
var random = new Random();
// make sure Zipkin with Scribe client is working
var collector = new HttpCollector(new Uri("http://localhost:9411/"));
//var collector = new KafkaCollector(KafkaSettings.Default);
var traceId = new TraceHeader(traceId: (ulong)random.Next(), spanId: (ulong)random.Next());
var span = new Span(traceId, new IPEndPoint(IPAddress.Loopback, 9000), "zipkinweb");
span.Record(Annotations.ClientSend(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ServerReceive(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ServerSend(DateTime.UtcNow));
Thread.Sleep(100);
span.Record(Annotations.ClientReceive(DateTime.UtcNow));

        collector.CollectAsync(span);
    }

復制代碼
然后運行一次再查看,會多出一條信息

點進去會看到請求的詳細信息和備注信息:

右上角查看json

  驗證了NET平台下是可以成功調用的,而且可以看到zipkin服務前端展示是通過api請求的,前后台分開的,因此我們可以以此來做二次開發,我們知道了數據結構或者通過自己請求數據庫內容做更復雜的業務前端。

  這里強調一點的是net最好用framework4.5以上的版本,由net的demo來看其實封裝性不高,所以靈活性能很高,需要自己進一步封裝才能達到代碼的侵入性更少,性能更高。后面考慮到性能和數據量可改用kafka接收和ES保存數據。

作者:歡醉


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM