參數:
n : int
數據集中的元素總數。
n_iter : int (default 10)
重新洗牌和分裂迭代次數。
test_size : float (default 0.1), int, or None
如果是float類型的數據, 這個數應該介於0-1.0之間,代表test集所占比例. 如果是int類型, 代表test集的數量. 如果為None, 值將自動設置為train集大小的補集
train_size : float, int, or None (default is None)
如果是float類型的數據 應該介於0和1之間,並表示數據集在train集分割中所占的比例 如果是int類型, 代表train集的樣本數量. 如果為None, 值將自動設置為test集大小的補集
random_state : int or RandomState
用於隨機抽樣的偽隨機數發生器狀態。
- >>> from sklearn import cross_validation
- >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
- ... test_size=.25, random_state=0)
- >>> len(rs)
- 3
- >>> print(rs)
- ...
- ShuffleSplit(4, n_iter=3, test_size=0.25, ...)
- >>> for train_index, test_index in rs:
- ... print("TRAIN:", train_index, "TEST:", test_index)
- ...
- TRAIN: [3 1 0] TEST: [2]
- TRAIN: [2 1 3] TEST: [0]
- TRAIN: [0 2 1] TEST: [3]
- >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
- ... train_size=0.5, test_size=.25, random_state=0)
- >>> for train_index, test_index in rs:
- ... print("TRAIN:", train_index, "TEST:", test_index)
- ...
- TRAIN: [3 1] TEST: [2]
- TRAIN: [2 1] TEST: [0]
- TRAIN: [0 2] TEST: [3]
- .. automethod:: __init__
