請根據 models/blob/master/research/object_detection/g3doc/
目錄下的 installation.md 配置好你的環境
環境搭建可參考:基於win10,GPU的Tensorflow Object Detection API部署及USB攝像頭目標檢測
1. 測試opencv調用usb,c++和python兩個版本
在Ubuntu16.04安裝OpenCV3.1並實現USB攝像頭圖像采集
import cv2 cv2.namedWindow('testcamera', cv2.WINDOW_NORMAL) capture = cv2.VideoCapture(0) print (capture.isOpened()) num = 0 while 1: ret, img = capture.read() cv2.imshow('testcamera', img) key = cv2.waitKey(1) num += 1 if key==1048603:#<ESC> break capture.release() cv2.destroyAllWindows()
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> using namespace cv; int main(int argc, char** argv) { cvNamedWindow("視頻"); CvCapture* capture = cvCreateCameraCapture(-1); IplImage* frame; while(1) { frame = cvQueryFrame(capture); if(!frame) break; cvShowImage("視頻", frame); char c = cvWaitKey(50); if(c==27) break; } cvReleaseCapture(&capture); cvDestroyWindow("視頻"); return 0; }
2. GPU的Tensorflow Object Detection API部署及USB攝像頭目標檢測
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile import cv2 import time from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") from utils import label_map_util from utils import visualization_utils as vis_util # What model to download. MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' #MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017' #MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017' MODEL_FILE = MODEL_NAME + '.tar.gz' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('/home/dsp/ranjiewen/tensorflow_models/models/research/object_detection/data', 'mscoco_label_map.pbtxt') #extract the ssd_mobilenet start = time.clock() NUM_CLASSES = 90 opener = urllib.request.URLopener() #opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) end= time.clock() print ('load the model',(end-start)) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) cap = cv2.VideoCapture(0) print (cap.isOpened()) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: writer = tf.summary.FileWriter("logs/", sess.graph) sess.run(tf.global_variables_initializer()) while(1): print("-------") ret, frame = cap.read() start = time.clock() if cv2.waitKey(1) & 0xFF == ord('q'): break image_np=frame # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=6) end = time.clock() print ('frame fps:',1.0/(end - start)) #print 'frame:',time.time() - start cv2.imshow("capture", image_np) cv2.waitKey(1) cap.release() cv2.destroyAllWindows()
- 速度感覺還可以 。。。