機器學習(回歸預測數值型數據)


之前介紹的分類的目標變量都是標稱型數據,接下來我們將介紹連續型的數據並且作出預測,本篇介紹的是線性回歸,接下來引入局部平滑技術,能夠更好地擬合數據

本篇我們主要討論欠擬合情況下的縮減的技術,探討偏差和方差的概念。

優點:結構易於理解,計算上不復雜

缺點:對非線性的數據擬合不好

適合數值型和標稱型數據

有回歸方程,求回歸方程的回歸系數的過程就是回歸,一旦有了回歸系數,再給定了輸入,做預測就非常容易。具體做法就是回歸系數乘以輸入數據,再將結果全部加到一起,就得到預測值

機器學習算法的基本任務就是預測,預測目標按照數據類型可以分為兩類:一種是標稱型數據(通常表現為類標簽),另一種是連續型數據(例如房價或者銷售量等等)。針對標稱型數據的預測就是我們常說的分類,針對數值型數據的預測就是回歸了。這里有一個特殊的算法需要注意,邏輯回歸(logistic regression)是一種用來分類的算法,那為什么又叫“回歸”呢?這是因為邏輯回歸是通過擬合曲線來進行分類的。也就是說,邏輯回歸只不過在擬合曲線的過程中采用了回歸的思想,其本質上仍然是分類算法

 這個簡單的式子就叫回歸方程,其中0.7和0.19稱為回歸系數,面積和房子的朝向稱為特征。有了這些概念,我們就可以說,回歸實際上就是求回歸系數的過程。在這里我們看到,房價和面積以及房子的朝向這兩個特征呈線性關系,這種情況我們稱之為線性回歸。當然還存在非線性回歸,在這種情況下會考慮特征之間出現非線性操作的可能性(比如相乘或者相除),由於情況有點復雜,不在這篇文章的討論范圍之內。 
  簡便起見,我們規定代表輸入數據的矩陣為XX (維度為m*n,m為樣本數,n為特征維度),回歸系數向量為 θθ(維度為n*1)。對於給定的數據矩陣XX ,其預測結果由:Y=XθY=Xθ 這個式子給出。我們手里有一些現成的x和y作為訓練集,那么如何根據訓練集找到合適的回歸系數向量θθ是我們要考慮的首要問題,一旦找到θθ,預測問題就迎刃而解了。在實際應用中,我們通常認為能帶來最小平方誤差的θθ就是我們所要尋找的回歸系數向量。平方誤差指的是預測值與真實值的差的平方。采用平方這種形式的目的在於規避正負誤差的互相抵消。所以,我們的目標函數如下所示:    

 
minθi=0m(yixTiθ)2minθ∑i=0m(yi−xiTθ)2


  這里的m代表訓練樣本的總數。對這個函數的求解有很多方法,由於網絡上對於詳細解法的相關資料太少,下面展示一種利用正規方程組的解法: 
這里寫圖片描述 (1) 
這里寫圖片描述       AtrAB=BT∇AtrAB=BT(2)
  針對上式不太清楚的朋友可以看我之前寫的這篇博文:http://blog.csdn.net/qrlhl/article/details/47758509。根據以上式子,解法如下:
 
這里寫圖片描述

 

  令其等於0,即可得:θ=(XTX)1XTyθ=(XTX)−1XTy 。有一些需要說明的地方:第三步是根據實數的跡和等於本身這一事實推導出的(括號中的每一項都為實數),第四步是根據式(2)推導出來的。第五步是根據式(1)推導出來的,其中的C為單位矩陣II。這樣,我們就得到了根據訓練集求得回歸系數矩陣θθ的方程。這種方法的特點是簡明易懂,不過缺點也很明顯,就是XTXXTX 這一項不一定可以順利的求逆。由於只有滿秩才可以求逆,這對數據矩陣XX提出了一定的要求。有人也許會問XTXXTX不是滿秩的情況下怎么辦?這個時候就要用到嶺回歸(ridge regression)了,這一部分留到下次再講。

 

 

貼上代碼

from numpy import *

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws

def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
    m = shape(xMat)[0]
    weights = mat(eye((m)))
    for j in range(m):                      #next 2 lines create weights matrix
        diffMat = testPoint - xMat[j,:]     #
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
    xTx = xMat.T * (weights * xMat)
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws

def lwlrTest(testArr,xArr,yArr,k=1.0):  #loops over all the data points and applies lwlr to each one
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat

def lwlrTestPlot(xArr,yArr,k=1.0):  #same thing as lwlrTest except it sorts X first
    yHat = zeros(shape(yArr))       #easier for plotting
    xCopy = mat(xArr)
    xCopy.sort(0)
    for i in range(shape(xArr)[0]):
        yHat[i] = lwlr(xCopy[i],xArr,yArr,k)
    return yHat,xCopy

def rssError(yArr,yHatArr): #yArr and yHatArr both need to be arrays
    return ((yArr-yHatArr)**2).sum()

def ridgeRegres(xMat,yMat,lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx + eye(shape(xMat)[1])*lam
    if linalg.det(denom) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = denom.I * (xMat.T*yMat)
    return ws
    
def ridgeTest(xArr,yArr):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #to eliminate X0 take mean off of Y
    #regularize X's
    xMeans = mean(xMat,0)   #calc mean then subtract it off
    xVar = var(xMat,0)      #calc variance of Xi then divide by it
    xMat = (xMat - xMeans)/xVar
    numTestPts = 30
    wMat = zeros((numTestPts,shape(xMat)[1]))
    for i in range(numTestPts):
        ws = ridgeRegres(xMat,yMat,exp(i-10))
        wMat[i,:]=ws.T
    return wMat

def regularize(xMat):#regularize by columns
    inMat = xMat.copy()
    inMeans = mean(inMat,0)   #calc mean then subtract it off
    inVar = var(inMat,0)      #calc variance of Xi then divide by it
    inMat = (inMat - inMeans)/inVar
    return inMat

def stageWise(xArr,yArr,eps=0.01,numIt=100):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #can also regularize ys but will get smaller coef
    xMat = regularize(xMat)
    m,n=shape(xMat)
    #returnMat = zeros((numIt,n)) #testing code remove
    ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
    for i in range(numIt):
        print ws.T
        lowestError = inf; 
        for j in range(n):
            for sign in [-1,1]:
                wsTest = ws.copy()
                wsTest[j] += eps*sign
                yTest = xMat*wsTest
                rssE = rssError(yMat.A,yTest.A)
                if rssE < lowestError:
                    lowestError = rssE
                    wsMax = wsTest
        ws = wsMax.copy()
        #returnMat[i,:]=ws.T
    #return returnMat

#def scrapePage(inFile,outFile,yr,numPce,origPrc):
#    from BeautifulSoup import BeautifulSoup
#    fr = open(inFile); fw=open(outFile,'a') #a is append mode writing
#    soup = BeautifulSoup(fr.read())
#    i=1
#    currentRow = soup.findAll('table', r="%d" % i)
#    while(len(currentRow)!=0):
#        title = currentRow[0].findAll('a')[1].text
#        lwrTitle = title.lower()
#        if (lwrTitle.find('new') > -1) or (lwrTitle.find('nisb') > -1):
#            newFlag = 1.0
#        else:
#            newFlag = 0.0
#        soldUnicde = currentRow[0].findAll('td')[3].findAll('span')
#        if len(soldUnicde)==0:
#            print "item #%d did not sell" % i
#        else:
#            soldPrice = currentRow[0].findAll('td')[4]
#            priceStr = soldPrice.text
#            priceStr = priceStr.replace('$','') #strips out $
#            priceStr = priceStr.replace(',','') #strips out ,
#            if len(soldPrice)>1:
#                priceStr = priceStr.replace('Free shipping', '') #strips out Free Shipping
#            print "%s\t%d\t%s" % (priceStr,newFlag,title)
#            fw.write("%d\t%d\t%d\t%f\t%s\n" % (yr,numPce,newFlag,origPrc,priceStr))
#        i += 1
#        currentRow = soup.findAll('table', r="%d" % i)
#    fw.close()
    
from time import sleep
import json
import urllib2
def searchForSet(retX, retY, setNum, yr, numPce, origPrc):
    sleep(10)
    myAPIstr = 'AIzaSyD2cR2KFyx12hXu6PFU-wrWot3NXvko8vY'
    searchURL = 'https://www.googleapis.com/shopping/search/v1/public/products?key=%s&country=US&q=lego+%d&alt=json' % (myAPIstr, setNum)
    pg = urllib2.urlopen(searchURL)
    retDict = json.loads(pg.read())
    for i in range(len(retDict['items'])):
        try:
            currItem = retDict['items'][i]
            if currItem['product']['condition'] == 'new':
                newFlag = 1
            else: newFlag = 0
            listOfInv = currItem['product']['inventories']
            for item in listOfInv:
                sellingPrice = item['price']
                if  sellingPrice > origPrc * 0.5:
                    print "%d\t%d\t%d\t%f\t%f" % (yr,numPce,newFlag,origPrc, sellingPrice)
                    retX.append([yr, numPce, newFlag, origPrc])
                    retY.append(sellingPrice)
        except: print 'problem with item %d' % i
    
def setDataCollect(retX, retY):
    searchForSet(retX, retY, 8288, 2006, 800, 49.99)
    searchForSet(retX, retY, 10030, 2002, 3096, 269.99)
    searchForSet(retX, retY, 10179, 2007, 5195, 499.99)
    searchForSet(retX, retY, 10181, 2007, 3428, 199.99)
    searchForSet(retX, retY, 10189, 2008, 5922, 299.99)
    searchForSet(retX, retY, 10196, 2009, 3263, 249.99)
    
def crossValidation(xArr,yArr,numVal=10):
    m = len(yArr)                           
    indexList = range(m)
    errorMat = zeros((numVal,30))#create error mat 30columns numVal rows
    for i in range(numVal):
        trainX=[]; trainY=[]
        testX = []; testY = []
        random.shuffle(indexList)
        for j in range(m):#create training set based on first 90% of values in indexList
            if j < m*0.9: 
                trainX.append(xArr[indexList[j]])
                trainY.append(yArr[indexList[j]])
            else:
                testX.append(xArr[indexList[j]])
                testY.append(yArr[indexList[j]])
        wMat = ridgeTest(trainX,trainY)    #get 30 weight vectors from ridge
        for k in range(30):#loop over all of the ridge estimates
            matTestX = mat(testX); matTrainX=mat(trainX)
            meanTrain = mean(matTrainX,0)
            varTrain = var(matTrainX,0)
            matTestX = (matTestX-meanTrain)/varTrain #regularize test with training params
            yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)#test ridge results and store
            errorMat[i,k]=rssError(yEst.T.A,array(testY))
            #print errorMat[i,k]
    meanErrors = mean(errorMat,0)#calc avg performance of the different ridge weight vectors
    minMean = float(min(meanErrors))
    bestWeights = wMat[nonzero(meanErrors==minMean)]
    #can unregularize to get model
    #when we regularized we wrote Xreg = (x-meanX)/var(x)
    #we can now write in terms of x not Xreg:  x*w/var(x) - meanX/var(x) +meanY
    xMat = mat(xArr); yMat=mat(yArr).T
    meanX = mean(xMat,0); varX = var(xMat,0)
    unReg = bestWeights/varX
    print "the best model from Ridge Regression is:\n",unReg
    print "with constant term: ",-1*sum(multiply(meanX,unReg)) + mean(yMat)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM