進程,線程,以及Python的多進程實例


什么是進程,什么是線程?

進程與線程是包含關系,進程包含了線程。

進程是系統資源分配的最小單元,線程是系統任務執行的最小單元。

打個比方,打開word,word這個程序是一個進程,里面的拼寫檢查,字數統計,更改字體等等功能是一個個線程。當word這個進程啟動的時候,系統分配給word進程一些資源(CPU,內存等),當某個線程執行時需要資源時,就從word進程的資源池里取。

關於Python的多進程實例,我們可以用Python的multiprocessing package來實現。

multiprocessing模塊提供了一個Process類來代表一個進程對象,下面的例子演示了啟動一個子進程並等待其結束:

from multiprocessing import Process
import os

# 子進程要執行的代碼
def run_proc(name):
    print('Run child process %s (%s)...' % (name, os.getpid()))

if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Process(target=run_proc, args=('test',))
    print('Child process will start.')
    p.start()
    p.join()
    print('Child process end.')

執行結果:

Parent process 928.
Process will start.
Run child process test (929)...
Process end.

創建子進程時,只需要傳入一個執行函數和函數的參數,創建一個Process實例,用start()方法啟動,這樣創建進程比fork()還要簡單。join()方法可以等待子進程結束后再繼續往下運行,通常用於進程間的同步。

如果要啟動大量的子進程,可以用進程池的方式批量創建子進程:

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, (end - start)))

if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done.')

執行結果如下:

Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.

代碼解讀: 對Pool對象調用join()方法會等待所有子進程執行完畢,調用join()之前必須先調用close(),調用close()之后就不能繼續添加新的Process了。

請注意輸出的結果,task 0,1,2,3是立刻執行的,而task 4要等待前面某個task完成后才執行,這是因為Pool的默認大小在我的電腦上是4,因此,最多同時執行4個進程。這是Pool有意設計的限制,並不是操作系統的限制。如果改成p=Pool(5),就可以跑5個進程

子進程

很多時候,子進程並不是自身,而是一個外部進程。我們創建了子進程后,還需要控制子進程的輸入和輸出。

subprocess模塊可以讓我們非常方便地啟動一個子進程,然后控制其輸入和輸出。

下面的例子演示了如何在Python代碼中運行命令nslookup www.python.org,這和命令行直接運行的效果是一樣的:

import subprocess

print('$ nslookup www.python.org')
r = subprocess.call(['nslookup', 'www.python.org'])
print('Exit code:', r)

 

運行結果:

$ nslookup www.python.org
Server:        192.168.19.4
Address:    192.168.19.4#53

Non-authoritative answer:
www.python.org    canonical name = python.map.fastly.net.
Name:    python.map.fastly.net
Address: 199.27.79.223

Exit code: 0

 

如果子進程還需要輸入,則可以通過communicate()方法輸入:

import subprocess

print('$ nslookup')
p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate(b'set q=mx\npython.org\nexit\n')
print(output.decode('utf-8'))
print('Exit code:', p.returncode)

 

上面的代碼相當於在命令行執行命令nslookup,然后手動輸入:

set q=mx
python.org
exit

 

運行結果如下:

$ nslookup
Server:        192.168.19.4
Address:    192.168.19.4#53

Non-authoritative answer:
python.org    mail exchanger = 50 mail.python.org.

Authoritative answers can be found from:
mail.python.org    internet address = 82.94.164.166
mail.python.org    has AAAA address 2001:888:2000:d::a6


Exit code: 0

 

進程間通信

Process之間肯定是需要通信的,操作系統提供了很多機制來實現進程間的通信。Python的multiprocessing模塊包裝了底層的機制,提供了QueuePipes等多種方式來交換數據。

我們以Queue為例,在父進程中創建兩個子進程,一個往Queue里寫數據,一個從Queue里讀數據:

from multiprocessing import Process, Queue
import os, time, random

# 寫數據進程執行的代碼:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 讀數據進程執行的代碼:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)

if __name__=='__main__':
    # 父進程創建Queue,並傳給各個子進程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 啟動子進程pw,寫入:
    pw.start()
    # 啟動子進程pr,讀取:
    pr.start()
    # 等待pw結束:
    pw.join()
    # pr進程里是死循環,無法等待其結束,只能強行終止:
    pr.terminate()

 

運行結果如下:

Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.

 

在Unix/Linux下,multiprocessing模塊封裝了fork()調用,使我們不需要關注fork()的細節。由於Windows沒有fork調用,因此,multiprocessing需要“模擬”出fork的效果,父進程所有Python對象都必須通過pickle序列化再傳到子進程去,所有,如果multiprocessing在Windows下調用失敗了,要先考慮是不是pickle失敗了。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM