很久沒看推薦系統相關的論文了,最近發現一篇2017年的論文,感覺不錯。
原始論文 https://arxiv.org/pdf/1708.05031.pdf
網上有翻譯了 https://www.cnblogs.com/HolyShine/p/6728999.html
git項目 https://github.com/hexiangnan/neural_collaborative_filtering
項目的主題框架如下:
代碼是使用keras來實現的深度學習,其中GMF.py是傳統的Matrix Factorization算法,關鍵代碼分為兩部分:
def get_model(num_users, num_items, latent_dim, regs=[0,0]): # Input variables user_input = Input(shape=(1,), dtype='int32', name = 'user_input') item_input = Input(shape=(1,), dtype='int32', name = 'item_input') MF_Embedding_User = Embedding(input_dim = num_users, output_dim = latent_dim, name = 'user_embedding', init = init_normal, W_regularizer = l2(regs[0]), input_length=1) MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = latent_dim, name = 'item_embedding', init = init_normal, W_regularizer = l2(regs[1]), input_length=1) # Crucial to flatten an embedding vector! user_latent = Flatten()(MF_Embedding_User(user_input)) item_latent = Flatten()(MF_Embedding_Item(item_input)) # Element-wise product of user and item embeddings predict_vector = merge([user_latent, item_latent], mode = 'mul') # Final prediction layer #prediction = Lambda(lambda x: K.sigmoid(K.sum(x)), output_shape=(1,))(predict_vector) prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(predict_vector) model = Model(input=[user_input, item_input], output=prediction) return model
上述代碼是構建模型結構,首先定義Input為一維多列的數據,然后是Embedding層,Embedding主要是為了降維,就是起到了look up的作用,然后是Merge層,將用戶和物品的張量進行了內積相乘(latent_dim 表示兩者的潛在降維的維度是相同的,因此可以做內積),緊接着是一個全連接層,激活函數為sigmoid。
下面是MLP.py的源碼:
def get_model(num_users, num_items, layers = [20,10], reg_layers=[0,0]): assert len(layers) == len(reg_layers) num_layer = len(layers) #Number of layers in the MLP # Input variables user_input = Input(shape=(1,), dtype='int32', name = 'user_input') item_input = Input(shape=(1,), dtype='int32', name = 'item_input') MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = layers[0]/2, name = 'user_embedding', init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = layers[0]/2, name = 'item_embedding', init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) # Crucial to flatten an embedding vector! user_latent = Flatten()(MLP_Embedding_User(user_input)) item_latent = Flatten()(MLP_Embedding_Item(item_input)) # The 0-th layer is the concatenation of embedding layers vector = merge([user_latent, item_latent], mode = 'concat') # MLP layers for idx in xrange(1, num_layer): layer = Dense(layers[idx], W_regularizer= l2(reg_layers[idx]), activation='relu', name = 'layer%d' %idx) vector = layer(vector) # Final prediction layer prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(vector) model = Model(input=[user_input, item_input], output=prediction) return model
最重要的也是構建模型的部分,與GMF不同的有兩個部分,首先是user_latent和item_latent的merge的部分,不再采用內積的形式,而是contract拼接的方式;再者就是for循環構建深層全連接神經網絡,內部Layer的激活函數是relu,最后一層的激活函數仍然是sigmoid。
接下來是NeuMF.py,將MLP和GMF進行了融合,模型構建代碼如下
def get_model(num_users, num_items, mf_dim=10, layers=[10], reg_layers=[0], reg_mf=0): assert len(layers) == len(reg_layers) num_layer = len(layers) #Number of layers in the MLP # Input variables user_input = Input(shape=(1,), dtype='int32', name = 'user_input') item_input = Input(shape=(1,), dtype='int32', name = 'item_input') # Embedding layer MF_Embedding_User = Embedding(input_dim = num_users, output_dim = mf_dim, name = 'mf_embedding_user', init = init_normal, W_regularizer = l2(reg_mf), input_length=1) MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = mf_dim, name = 'mf_embedding_item', init = init_normal, W_regularizer = l2(reg_mf), input_length=1) MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = layers[0]/2, name = "mlp_embedding_user", init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = layers[0]/2, name = 'mlp_embedding_item', init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) # MF part mf_user_latent = Flatten()(MF_Embedding_User(user_input)) mf_item_latent = Flatten()(MF_Embedding_Item(item_input)) mf_vector = merge([mf_user_latent, mf_item_latent], mode = 'mul') # element-wise multiply # MLP part mlp_user_latent = Flatten()(MLP_Embedding_User(user_input)) mlp_item_latent = Flatten()(MLP_Embedding_Item(item_input)) mlp_vector = merge([mlp_user_latent, mlp_item_latent], mode = 'concat') for idx in xrange(1, num_layer): layer = Dense(layers[idx], W_regularizer= l2(reg_layers[idx]), activation='relu', name="layer%d" %idx) mlp_vector = layer(mlp_vector) # Concatenate MF and MLP parts #mf_vector = Lambda(lambda x: x * alpha)(mf_vector) #mlp_vector = Lambda(lambda x : x * (1-alpha))(mlp_vector) predict_vector = merge([mf_vector, mlp_vector], mode = 'concat') # Final prediction layer prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = "prediction")(predict_vector) model = Model(input=[user_input, item_input], output=prediction) return model
代碼的前半部分分別是GMFe和MLP的內部layer構建過程,在 predict_vector = merge([mf_vector, mlp_vector], mode = 'concat')這一行開始對兩者的輸出進行了merge,方式為concat。最后包了一層的sigmoid。
看完了構建模型的代碼,下面關注幾個細節:
- 訓練樣本的正負比例如何設定?
def get_train_instances(train, num_negatives): user_input, item_input, labels = [],[],[] num_users = train.shape[0] for (u, i) in train.keys(): # positive instance user_input.append(u) item_input.append(i) labels.append(1) # negative instances for t in xrange(num_negatives): j = np.random.randint(num_items) while train.has_key((u, j)): j = np.random.randint(num_items) user_input.append(u) item_input.append(j) labels.append(0) return user_input, item_input, labels
該函數是獲取用戶和物品的訓練數據,其中num_negatives控制着正負樣本的比例,負樣本的獲取方法也簡單粗暴,直接隨機選取用戶沒有選擇的其余的物品。
- 保存了訓練的模型,該怎么對數據進行預測?我們從evalute.py中的源碼中可以得到答案
def eval_one_rating(idx): rating = _testRatings[idx] items = _testNegatives[idx] u = rating[0] gtItem = rating[1] items.append(gtItem) # Get prediction scores map_item_score = {} users = np.full(len(items), u, dtype = 'int32') predictions = _model.predict([users, np.array(items)], batch_size=100, verbose=0) for i in xrange(len(items)): item = items[i] map_item_score[item] = predictions[i] items.pop() # Evaluate top rank list ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get) hr = getHitRatio(ranklist, gtItem) ndcg = getNDCG(ranklist, gtItem) return (hr, ndcg)
輸入只要保證和訓練的時候的格式一樣即可,這里作者事先構建了negative的數據,也就是說對negative的物品和測試集合中的某一個物品進行了預測,最終選取topK的,來評測是否在其中(注getHitRatio函數不是最終結果,只是0/1) eval_one_rating 函數只是對測試集合中的某個用戶的某個物品,以及和事先划分好的負樣本組合在一起進行預測,最終輸出該測試物品是否在topK中。
- Embedding 層的物品的latent_dim和用戶的latent_dim是一致的,如果不一致是否可以?在實際中未必兩者的維度是一致的,這里受限於keras的merge函數的參數要求,輸入的數據的shape必須是一致的,所以必須是一致的。以及Merge中的mode參數,至於什么時候選擇contact,什么時候選擇mul,我覺得依賴於模型效果,在實際工程中選擇使得最優的方式。
python MLP.py --dataset ml-1m --epochs 20 --batch_size 256 --layers [64,32,16,8]
這是運行MLP的參數,layers的參數在逐漸減小,這也是深度神經網絡的潛在設置,一般意義上越深的layer是對前面的更高層次的抽象。