win7實現tensorflow中的物體識別


實現條件:

1.win7

2.python

3.運行所需要的庫:matplotlib、lxml、pillow、Cython

具體參考:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

4.object_detection包,下載地址:https://github.com/tensorflow/models  

 

 

下載后解壓   object_detection的位置在research文件夾中

5.編譯好的protos文件,object_detection中的文件沒有編譯,編譯好的文件下載地址:https://github.com/1529591487/Object-Detection

直接替換object_detection中的protos文件夾即可。

 代碼:

1.

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# 這里改成你下載的object_detection包的位置
sys.path.append(r"E:\學習資料\人工智能\models-master\research")
from object_detection.utils import ops as utils_ops

if tf.__version__ < '1.4.0':
  raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')

2.

%matplotlib inline

3.

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util

這里會有警告,但是不影響,如果要去掉警告的話,將models-master\research\object_detection\utils\visualization_utils.py 文件中的第26行改成

matplotlib.use('Agg',warn=False, force=True)

4.

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# 這里的路徑也需要修改
PATH_TO_LABELS = os.path.join(r'E:\學習資料\人工智能\models-master\research\object_detection\data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

5.

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())

6.

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

7.

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

8.

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)

9.

def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict

10.

IMAGE_SIZE = (36, 24)
#這里設置圖片路徑
mydir=r'E:\學習資料\人工智能\models-master\research\object_detection\test_images'
# mydir = 'G:\壁紙'
for filename in os.listdir(mydir):
    if os.path.splitext(filename)[1] == '.jpg':
        filepath=os.path.join(mydir, filename)
        print(filepath)
        image = Image.open(filepath)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
        image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
        output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
            image_np,
            output_dict['detection_boxes'],
            output_dict['detection_classes'],
            output_dict['detection_scores'],
            category_index,
            instance_masks=output_dict.get('detection_masks'),
            use_normalized_coordinates=True,
            line_thickness=8)
        fig1 = plt.gcf()
        plt.figure(figsize=IMAGE_SIZE)
        plt.imshow(image_np)

運行結果:

代碼參考:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb

 

有些圖片識別會失敗,目前還沒搞清楚,歡迎大家交流

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM