詞雲---利用python對電影評價的爬取
一、抓取網頁數據
1:網頁爬取一些數據的前期工作
from urllib import request resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/') html_data = resp.read().decode('utf-8')
:2:爬取得到的html解析
from bs4 import BeautifulSoup as bs soup = bs(html_data, 'html.parser') nowplaying_movie = soup.find_all('div', id='nowplaying') nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item')
在上圖中可以看到data-subject屬性里面id,而在img標簽的電影的名字,兩個屬性來獲得電影的id和名稱。
nowplaying_list = [] for i in nowplaying_movie_list: nowplaying_dict = {} nowplaying_dict['id'] = i['data-subject'] for tag_img_item in i.find_all('img'): nowplaying_dict['name'] = tag_img_item['alt'] nowplaying_list.append(nowplaying_dict)
二、數據的處理
comments = '' for k in range(len(eachCommentList)): comments = comments + (str(eachCommentList[k])).strip()
三、詞雲生成圖片
import matplotlib.pyplot as plt %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 5.0) from wordcloud import WordCloud#詞雲包 wordcloud=WordCloud(font_path="simhei.ttf",background_color="white",max_font_size=80) word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key,word_frequence[key]) word_frequence_list.append(temp) wordcloud=wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud)
付源碼 # -*- coding: utf-8 -*- import warnings warnings.filterwarnings("ignore") import jieba # 分詞包 import numpy # numpy計算包 import codecs # codecs提供的open方法來指定打開的文件的語言編碼,它會在讀取的時候自動轉換為內部unicode import re import pandas as pd import matplotlib.pyplot as plt from PIL import Image from urllib import request from bs4 import BeautifulSoup as bs from wordcloud import WordCloud,ImageColorGenerator # 詞雲包 import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 5.0) # 分析網頁函數 def getNowPlayingMovie_list(): resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/') html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') nowplaying_movie = soup.find_all('div', id='nowplaying') nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item') nowplaying_list = [] for item in nowplaying_movie_list: nowplaying_dict = {} nowplaying_dict['id'] = item['data-subject'] for tag_img_item in item.find_all('img'): nowplaying_dict['name'] = tag_img_item['alt'] nowplaying_list.append(nowplaying_dict) return nowplaying_list # 爬取評論函數 def getCommentsById(movieId, pageNum): eachCommentList = [] if pageNum > 0: start = (pageNum - 1) * 20 else: return False requrl = 'https://movie.douban.com/subject/' + movieId + '/comments' + '?' + 'start=' + str(start) + '&limit=20' print(requrl) resp = request.urlopen(requrl) html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') comment_div_lits = soup.find_all('div', class_='comment') for item in comment_div_lits: if item.find_all('p')[0].string is not None: eachCommentList.append(item.find_all('p')[0].string) return eachCommentList def main(): # 循環獲取第一個電影的前10頁評論 commentList = [] NowPlayingMovie_list = getNowPlayingMovie_list() for i in range(10): num = i + 1 commentList_temp = getCommentsById(NowPlayingMovie_list[0]['id'], num) commentList.append(commentList_temp) # 將列表中的數據轉換為字符串 comments = '' for k in range(len(commentList)): comments = comments + (str(commentList[k])).strip() # 使用正則表達式去除標點符號 pattern = re.compile(r'[\u4e00-\u9fa5]+') filterdata = re.findall(pattern, comments) cleaned_comments = ''.join(filterdata) # 使用結巴分詞進行中文分詞 segment = jieba.lcut(cleaned_comments) words_df = pd.DataFrame({'segment': segment}) # 去掉停用詞 stopwords = pd.read_csv("stopwords.txt", index_col=False, quoting=3, sep="\t", names=['stopword'], encoding='utf-8') # quoting=3全不引用 words_df = words_df[~words_df.segment.isin(stopwords.stopword)] # 統計詞頻 words_stat = words_df.groupby(by=['segment'])['segment'].agg({"計數": numpy.size}) words_stat = words_stat.reset_index().sort_values(by=["計數"], ascending=False) # print(words_stat.head()) bg_pic = numpy.array(Image.open("alice_mask.png")) # 用詞雲進行顯示 wordcloud = WordCloud( font_path="simhei.ttf", background_color="white", max_font_size=80, width = 2000, height = 1800, mask = bg_pic, mode = "RGBA" ) word_frequence = {x[0]: x[1] for x in words_stat.head(1000).values} # print(word_frequence) """ word_frequence_list = [] for key in word_frequence: temp = (key, word_frequence[key]) word_frequence_list.append(temp) #print(word_frequence_list) """ wordcloud = wordcloud.fit_words(word_frequence) image_colors = ImageColorGenerator(bg_pic) # 根據圖片生成詞雲顏色 plt.imshow(wordcloud) #顯示詞雲圖片 plt.axis("off") plt.show() wordcloud.to_file('show_Chinese.png') # 把詞雲保存下來 main()