python大作業


詞雲---利用python對電影評價的爬取

一、抓取網頁數據

1:網頁爬取一些數據的前期工作

from urllib import request resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/') html_data = resp.read().decode('utf-8')

:2:爬取得到的html解析

from bs4 import BeautifulSoup as bs soup = bs(html_data, 'html.parser') nowplaying_movie = soup.find_all('div', id='nowplaying') nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item')

在上圖中可以看到data-subject屬性里面id,而在img標簽的電影的名字,兩個屬性來獲得電影的id和名稱。

nowplaying_list = [] for i in nowplaying_movie_list: nowplaying_dict = {} nowplaying_dict['id'] = i['data-subject'] for tag_img_item in i.find_all('img'): nowplaying_dict['name'] = tag_img_item['alt'] nowplaying_list.append(nowplaying_dict)

二、數據的處理

comments = '' for k in range(len(eachCommentList)): comments = comments + (str(eachCommentList[k])).strip()


三、詞雲生成圖片

import matplotlib.pyplot as plt %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 5.0) from wordcloud import WordCloud#詞雲包 wordcloud=WordCloud(font_path="simhei.ttf",background_color="white",max_font_size=80)  word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key,word_frequence[key]) word_frequence_list.append(temp) wordcloud=wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud)


付源碼

# -*- coding: utf-8 -*-

import warnings
warnings.filterwarnings("ignore")
import jieba  # 分詞包
import numpy  # numpy計算包
import codecs  # codecs提供的open方法來指定打開的文件的語言編碼,它會在讀取的時候自動轉換為內部unicode
import re
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from urllib import request
from bs4 import BeautifulSoup as bs
from wordcloud import WordCloud,ImageColorGenerator # 詞雲包
import matplotlib
matplotlib.rcParams['figure.figsize'] = (10.0, 5.0)



# 分析網頁函數
def getNowPlayingMovie_list():
    resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/')
    html_data = resp.read().decode('utf-8')
    soup = bs(html_data, 'html.parser')
    nowplaying_movie = soup.find_all('div', id='nowplaying')
    nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item')
    nowplaying_list = []
    for item in nowplaying_movie_list:
        nowplaying_dict = {}
        nowplaying_dict['id'] = item['data-subject']
        for tag_img_item in item.find_all('img'):
            nowplaying_dict['name'] = tag_img_item['alt']
            nowplaying_list.append(nowplaying_dict)
    return nowplaying_list

# 爬取評論函數
def getCommentsById(movieId, pageNum):
    eachCommentList = []
    if pageNum > 0:
        start = (pageNum - 1) * 20
    else:
        return False
    requrl = 'https://movie.douban.com/subject/' + movieId + '/comments' + '?' + 'start=' + str(start) + '&limit=20'
    print(requrl)
    resp = request.urlopen(requrl)
    html_data = resp.read().decode('utf-8')
    soup = bs(html_data, 'html.parser')
    comment_div_lits = soup.find_all('div', class_='comment')
    for item in comment_div_lits:
        if item.find_all('p')[0].string is not None:
            eachCommentList.append(item.find_all('p')[0].string)
    return eachCommentList

def main():
    # 循環獲取第一個電影的前10頁評論
    commentList = []
    NowPlayingMovie_list = getNowPlayingMovie_list()
    for i in range(10):
        num = i + 1
        commentList_temp = getCommentsById(NowPlayingMovie_list[0]['id'], num)
        commentList.append(commentList_temp)

    # 將列表中的數據轉換為字符串
    comments = ''
    for k in range(len(commentList)):
        comments = comments + (str(commentList[k])).strip()

    # 使用正則表達式去除標點符號
    pattern = re.compile(r'[\u4e00-\u9fa5]+')
    filterdata = re.findall(pattern, comments)
    cleaned_comments = ''.join(filterdata)

    # 使用結巴分詞進行中文分詞
    segment = jieba.lcut(cleaned_comments)
    words_df = pd.DataFrame({'segment': segment})

    # 去掉停用詞
    stopwords = pd.read_csv("stopwords.txt", index_col=False, quoting=3, sep="\t", names=['stopword'],
                            encoding='utf-8')  # quoting=3全不引用
    words_df = words_df[~words_df.segment.isin(stopwords.stopword)]

    # 統計詞頻
    words_stat = words_df.groupby(by=['segment'])['segment'].agg({"計數": numpy.size})
    words_stat = words_stat.reset_index().sort_values(by=["計數"], ascending=False)
    #  print(words_stat.head())

    bg_pic = numpy.array(Image.open("alice_mask.png"))

    # 用詞雲進行顯示
    wordcloud = WordCloud(
        font_path="simhei.ttf",
        background_color="white",
        max_font_size=80,
        width = 2000,
        height = 1800,
        mask = bg_pic,
        mode = "RGBA"
    )
    word_frequence = {x[0]: x[1] for x in words_stat.head(1000).values}
    # print(word_frequence)
    """
    word_frequence_list = []
    for key in word_frequence:
        temp = (key, word_frequence[key])
        word_frequence_list.append(temp)
        #print(word_frequence_list)
    """
    wordcloud = wordcloud.fit_words(word_frequence)

    image_colors = ImageColorGenerator(bg_pic) # 根據圖片生成詞雲顏色

    plt.imshow(wordcloud) #顯示詞雲圖片
    plt.axis("off")
    plt.show()
    wordcloud.to_file('show_Chinese.png')  # 把詞雲保存下來

main()

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM