go 語言系列 net/http


Go 源碼學習之--net/http

 

其實自己不是很會看源碼,但是學習優秀的源碼是提升自己代碼能力的一種方式,也可以對自己以后寫代碼有一個很好的影響,所以決定在之后的時間內,要有一個很好的習慣,閱讀優秀的源碼。剛開始自己會覺得看源碼很痛苦,這個和我自己的方法有關系,剛開始自己總是想要知道源碼的每一步操作,以及每個部分都是做什么,導致看着看着就看不下去了,所以也是從這次整理開始,調整自己閱讀源碼的方式,先去源碼框架的主要流程,細枝末節后面等對整體框架有個了解,並且很清晰了,再回頭來細致看,所以閱讀過程中如果有不理解的地方自己先進行跳過,先對主體的框架進行一個很好的學習。

對於golang,實現一個最簡單的http server 非常簡單,代碼如下:

復制代碼
package main

import (
    "net/http"
    "fmt"
)

func Indexhandler(w http.ResponseWriter,r *http.Request)  {
    fmt.Fprintln(w,"hello world")
}


func main() {
    http.HandleFunc("/",Indexhandler)
    http.ListenAndServe("127.0.0.1",nil)
}
復制代碼

通過上面這個簡單的例子,來一點一點學習go的net/http實現的http服務的原理

HTTP

理解HTTP相關的網絡應用,主要關注兩個地方-客戶端(client)和服務端(server)
兩者的交互主要是client的request以及server的response,主要就在於如何接受client的request並向client返回response

接收request的過程中,最重要的莫過於路由(router),即實現一個Multiplexer器。Go中既可以使用內置的mutilplexer --- DefautServeMux,也可以自定義。Multiplexer路由的目的就是為了找到處理器函數(handler),后者將對request進行處理,同時構建response

流程為:

Clinet -> Requests ->  [Multiplexer(router) -> handler  -> Response -> Clinet

理解go中的http服務,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基於ServeMux結構,同時也實現了Handler接口。下面對幾個重要概念說明:

  • hander函數: 具有func(w http.ResponseWriter, r *http.Requests)簽名的函數
  • handler處理器(函數): 經過HandlerFunc結構包裝的handler函數,它實現了ServeHTTP接口方法的函數。調用handler處理器的ServeHTTP方法時,即調用handler函數本身。
  • handler對象:實現了Handler接口ServeHTTP方法的結構。

Golang 的htttp處理流程,如下圖

 

Handler

Golang沒有繼承,類多態的方式可以通過接口實現。所謂接口則是定義聲明了函數簽名,任何結構只要實現了與接口函數簽名相同的方法,就等同於實現了接口。go的http服務都是基於handler進行處理。

type Handler interface {
    ServeHTTP(ResponseWriter, *Request)
}

任何結構體,只要實現了ServeHTTP方法,這個結構就可以稱之為handler對象。ServeMux會使用handler並調用其ServeHTTP方法處理請求並返回響應。

 

ServeMux

ServeMux的源碼:

復制代碼
type ServeMux struct {
    mu    sync.RWMutex
    m     map[string]muxEntry
    hosts bool 
}

type muxEntry struct {
    explicit bool
    h        Handler
    pattern  string
}
復制代碼

ServeMux結構中最重要的字段為m,這是一個map,key是一些url模式,value是一個muxEntry結構,后者里定義存儲了具體的url模式和handler。

當然,所謂的ServeMux也實現了ServeHTTP接口,也算是一個handler,不過ServeMux的ServeHTTP方法不是用來處理request和respone,而是用來找到路由注冊的handler

Server

除了ServeMux和Handler,還有一個結構Server需要了解。從http.ListenAndServe的源碼可以看出,它創建了一個server對象,並調用server對象的ListenAndServe方法:

func ListenAndServe(addr string, handler Handler) error {
    server := &Server{Addr: addr, Handler: handler}
    return server.ListenAndServe()
}

查看server的結構如下:

復制代碼
type Server struct {
    Addr         string        
    Handler      Handler       
    ReadTimeout  time.Duration 
    WriteTimeout time.Duration 
    TLSConfig    *tls.Config   

    MaxHeaderBytes int

    TLSNextProto map[string]func(*Server, *tls.Conn, Handler)

    ConnState func(net.Conn, ConnState)
    ErrorLog *log.Logger
    disableKeepAlives int32     nextProtoOnce     sync.Once 
    nextProtoErr      error     
}
復制代碼

server結構存儲了服務器處理請求常見的字段。其中Handler字段也保留Handler接口。如果Server接口沒有提供Handler結構對象,那么會使用DefautServeMux做multiplexer,后面再做分析。

創建HTTP服務
創建一個http服務,大致需要經歷兩個過程,首先需要注冊路由,即提供url模式和handler函數的映射,其次就是實例化一個server對象,並開啟對客戶端的監聽。

再看gohttp服務的代碼

http.HandleFunc("/", indexHandler)

 即是注冊路由。

復制代碼
http.ListenAndServe("127.0.0.1:8000", nil)

或者:

server := &Server{Addr: addr, Handler: handler}

server.ListenAndServe()
復制代碼

注冊路由

net/http包暴露的注冊路由的api很簡單,http.HandleFunc選取了DefaultServeMux作為multiplexer:

func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    DefaultServeMux.HandleFunc(pattern, handler)
}

DefaultServeMux是ServeMux的一個實例。當然http包也提供了NewServeMux方法創建一個ServeMux實例,默認則創建一個DefaultServeMux:

復制代碼
// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return new(ServeMux) }

// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = &defaultServeMux

var defaultServeMux ServeMux
復制代碼

DefaultServeMux的HandleFunc(pattern, handler)方法實際是定義在ServeMux下的:

// HandleFunc registers the handler function for the given pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    mux.Handle(pattern, HandlerFunc(handler))
}

HandlerFunc是一個函數類型。同時實現了Handler接口的ServeHTTP方法。使用HandlerFunc類型包裝一下路由定義的indexHandler函數,其目的就是為了讓這個函數也實現ServeHTTP方法,即轉變成一個handler處理器(函數)。

復制代碼
type HandlerFunc func(ResponseWriter, *Request)

// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
    f(w, r)
}
復制代碼

我們最開始寫的例子中
http.HandleFunc("/",Indexhandler)
這樣 IndexHandler 函數也有了ServeHTTP方法。ServeMux的Handle方法,將會對pattern和handler函數做一個map映射:

復制代碼
// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
    mux.mu.Lock()
    defer mux.mu.Unlock()

    if pattern == "" {
        panic("http: invalid pattern " + pattern)
    }
    if handler == nil {
        panic("http: nil handler")
    }
    if mux.m[pattern].explicit {
        panic("http: multiple registrations for " + pattern)
    }

    if mux.m == nil {
        mux.m = make(map[string]muxEntry)
    }
    mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}

    if pattern[0] != '/' {
        mux.hosts = true
    }

    // Helpful behavior:
    // If pattern is /tree/, insert an implicit permanent redirect for /tree.
    // It can be overridden by an explicit registration.
    n := len(pattern)
    if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
        // If pattern contains a host name, strip it and use remaining
        // path for redirect.
        path := pattern
        if pattern[0] != '/' {
            // In pattern, at least the last character is a '/', so
            // strings.Index can't be -1.
            path = pattern[strings.Index(pattern, "/"):]
        }
        url := &url.URL{Path: path}
        mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
    }
}
復制代碼

Handle函數的主要目的在於把handler和pattern模式綁定到map[string]muxEntry的map上,其中muxEntry保存了更多pattern和handler的信息,還記得前面討論的Server結構嗎?Server的m字段就是map[string]muxEntry這樣一個map。

此時,pattern和handler的路由注冊完成。接下來就是如何開始server的監聽,以接收客戶端的請求。

注冊好路由之后,啟動web服務還需要開啟服務器監聽。http的ListenAndServer方法中可以看到創建了一個Server對象,並調用了Server對象的同名方法:

復制代碼
func ListenAndServe(addr string, handler Handler) error {
    server := &Server{Addr: addr, Handler: handler}
    return server.ListenAndServe()
}
// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
// If srv.Addr is blank, ":http" is used.
// ListenAndServe always returns a non-nil error.
func (srv *Server) ListenAndServe() error {
    addr := srv.Addr
    if addr == "" {
        addr = ":http"
    }
    ln, err := net.Listen("tcp", addr)
    if err != nil {
        return err
    }
    return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}
復制代碼

Server的ListenAndServe方法中,會初始化監聽地址Addr,同時調用Listen方法設置監聽。最后將監聽的TCP對象傳入Serve方法:

復制代碼
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
//
// For HTTP/2 support, srv.TLSConfig should be initialized to the
// provided listener's TLS Config before calling Serve. If
// srv.TLSConfig is non-nil and doesn't include the string "h2" in
// Config.NextProtos, HTTP/2 support is not enabled.
//
// Serve always returns a non-nil error. After Shutdown or Close, the
// returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
    defer l.Close()
    if fn := testHookServerServe; fn != nil {
        fn(srv, l)
    }
    var tempDelay time.Duration // how long to sleep on accept failure

    if err := srv.setupHTTP2_Serve(); err != nil {
        return err
    }

    srv.trackListener(l, true)
    defer srv.trackListener(l, false)

    baseCtx := context.Background() // base is always background, per Issue 16220
    ctx := context.WithValue(baseCtx, ServerContextKey, srv)
    for {
        rw, e := l.Accept()
        if e != nil {
            select {
            case <-srv.getDoneChan():
                return ErrServerClosed
            default:
            }
            if ne, ok := e.(net.Error); ok && ne.Temporary() {
                if tempDelay == 0 {
                    tempDelay = 5 * time.Millisecond
                } else {
                    tempDelay *= 2
                }
                if max := 1 * time.Second; tempDelay > max {
                    tempDelay = max
                }
                srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
                time.Sleep(tempDelay)
                continue
            }
            return e
        }
        tempDelay = 0
        c := srv.newConn(rw)
        c.setState(c.rwc, StateNew) // before Serve can return
        go c.serve(ctx)
    }
}
復制代碼

監聽開啟之后,一旦客戶端請求到底,go就開啟一個協程處理請求,主要邏輯都在serve方法之中。

serve方法比較長,其主要職能就是,創建一個上下文對象,然后調用Listener的Accept方法用來 獲取連接數據並使用newConn方法創建連接對象。最后使用goroutein協程的方式處理連接請求。因為每一個連接都開起了一個協程,請求的上下文都不同,同時又保證了go的高並發。serve也是一個長長的方法:

復制代碼
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
    c.remoteAddr = c.rwc.RemoteAddr().String()
    ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
    defer func() {
        if err := recover(); err != nil && err != ErrAbortHandler {
            const size = 64 << 10
            buf := make([]byte, size)
            buf = buf[:runtime.Stack(buf, false)]
            c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
        }
        if !c.hijacked() {
            c.close()
            c.setState(c.rwc, StateClosed)
        }
    }()

    if tlsConn, ok := c.rwc.(*tls.Conn); ok {
        if d := c.server.ReadTimeout; d != 0 {
            c.rwc.SetReadDeadline(time.Now().Add(d))
        }
        if d := c.server.WriteTimeout; d != 0 {
            c.rwc.SetWriteDeadline(time.Now().Add(d))
        }
        if err := tlsConn.Handshake(); err != nil {
            c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
            return
        }
        c.tlsState = new(tls.ConnectionState)
        *c.tlsState = tlsConn.ConnectionState()
        if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
            if fn := c.server.TLSNextProto[proto]; fn != nil {
                h := initNPNRequest{tlsConn, serverHandler{c.server}}
                fn(c.server, tlsConn, h)
            }
            return
        }
    }

    // HTTP/1.x from here on.

    ctx, cancelCtx := context.WithCancel(ctx)
    c.cancelCtx = cancelCtx
    defer cancelCtx()

    c.r = &connReader{conn: c}
    c.bufr = newBufioReader(c.r)
    c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)

    for {
        w, err := c.readRequest(ctx)
        if c.r.remain != c.server.initialReadLimitSize() {
            // If we read any bytes off the wire, we're active.
            c.setState(c.rwc, StateActive)
        }
        if err != nil {
            const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"

            if err == errTooLarge {
                // Their HTTP client may or may not be
                // able to read this if we're
                // responding to them and hanging up
                // while they're still writing their
                // request. Undefined behavior.
                const publicErr = "431 Request Header Fields Too Large"
                fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                c.closeWriteAndWait()
                return
            }
            if isCommonNetReadError(err) {
                return // don't reply
            }

            publicErr := "400 Bad Request"
            if v, ok := err.(badRequestError); ok {
                publicErr = publicErr + ": " + string(v)
            }

            fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
            return
        }

        // Expect 100 Continue support
        req := w.req
        if req.expectsContinue() {
            if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
                // Wrap the Body reader with one that replies on the connection
                req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
            }
        } else if req.Header.get("Expect") != "" {
            w.sendExpectationFailed()
            return
        }

        c.curReq.Store(w)

        if requestBodyRemains(req.Body) {
            registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
        } else {
            if w.conn.bufr.Buffered() > 0 {
                w.conn.r.closeNotifyFromPipelinedRequest()
            }
            w.conn.r.startBackgroundRead()
        }

        // HTTP cannot have multiple simultaneous active requests.[*]
        // Until the server replies to this request, it can't read another,
        // so we might as well run the handler in this goroutine.
        // [*] Not strictly true: HTTP pipelining. We could let them all process
        // in parallel even if their responses need to be serialized.
        // But we're not going to implement HTTP pipelining because it
        // was never deployed in the wild and the answer is HTTP/2.
        serverHandler{c.server}.ServeHTTP(w, w.req)
        w.cancelCtx()
        if c.hijacked() {
            return
        }
        w.finishRequest()
        if !w.shouldReuseConnection() {
            if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
                c.closeWriteAndWait()
            }
            return
        }
        c.setState(c.rwc, StateIdle)
        c.curReq.Store((*response)(nil))

        if !w.conn.server.doKeepAlives() {
            // We're in shutdown mode. We might've replied
            // to the user without "Connection: close" and
            // they might think they can send another
            // request, but such is life with HTTP/1.1.
            return
        }

        if d := c.server.idleTimeout(); d != 0 {
            c.rwc.SetReadDeadline(time.Now().Add(d))
            if _, err := c.bufr.Peek(4); err != nil {
                return
            }
        }
        c.rwc.SetReadDeadline(time.Time{})
    }
}
復制代碼

使用defer定義了函數退出時,連接關閉相關的處理。然后就是讀取連接的網絡數據,並處理讀取完畢時候的狀態。接下來就是調用serverHandler{c.server}.ServeHTTP(w, w.req)方法處理請求了。最后就是請求處理完畢的邏輯。serverHandler是一個重要的結構,它近有一個字段,即Server結構,同時它也實現了Handler接口方法ServeHTTP,並在該接口方法中做了一個重要的事情,初始化multiplexer路由多路復用器。如果server對象沒有指定Handler,則使用默認的DefaultServeMux作為路由Multiplexer。並調用初始化Handler的ServeHTTP方法。

復制代碼
// serverHandler delegates to either the server's Handler or
// DefaultServeMux and also handles "OPTIONS *" requests.
type serverHandler struct {
    srv *Server
}

func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
    handler := sh.srv.Handler
    if handler == nil {
        handler = DefaultServeMux
    }
    if req.RequestURI == "*" && req.Method == "OPTIONS" {
        handler = globalOptionsHandler{}
    }
    handler.ServeHTTP(rw, req)
}
復制代碼

這里DefaultServeMux的ServeHTTP方法其實也是定義在ServeMux結構中的,相關代碼如下:

復制代碼
// Find a handler on a handler map given a path string.
// Most-specific (longest) pattern wins.
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
    // Check for exact match first.
    v, ok := mux.m[path]
    if ok {
        return v.h, v.pattern
    }

    // Check for longest valid match.
    var n = 0
    for k, v := range mux.m {
        if !pathMatch(k, path) {
            continue
        }
        if h == nil || len(k) > n {
            n = len(k)
            h = v.h
            pattern = v.pattern
        }
    }
    return
}
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {

    // CONNECT requests are not canonicalized.
    if r.Method == "CONNECT" {
        return mux.handler(r.Host, r.URL.Path)
    }

    // All other requests have any port stripped and path cleaned
    // before passing to mux.handler.
    host := stripHostPort(r.Host)
    path := cleanPath(r.URL.Path)
    if path != r.URL.Path {
        _, pattern = mux.handler(host, path)
        url := *r.URL
        url.Path = path
        return RedirectHandler(url.String(), StatusMovedPermanently), pattern
    }

    return mux.handler(host, r.URL.Path)
}

// handler is the main implementation of Handler.
// The path is known to be in canonical form, except for CONNECT methods.
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
    mux.mu.RLock()
    defer mux.mu.RUnlock()

    // Host-specific pattern takes precedence over generic ones
    if mux.hosts {
        h, pattern = mux.match(host + path)
    }
    if h == nil {
        h, pattern = mux.match(path)
    }
    if h == nil {
        h, pattern = NotFoundHandler(), ""
    }
    return
}

// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
    if r.RequestURI == "*" {
        if r.ProtoAtLeast(1, 1) {
            w.Header().Set("Connection", "close")
        }
        w.WriteHeader(StatusBadRequest)
        return
    }
    h, _ := mux.Handler(r)
    h.ServeHTTP(w, r)
}
復制代碼

mux的ServeHTTP方法通過調用其Handler方法尋找注冊到路由上的handler函數,並調用該函數的ServeHTTP方法,本例則是IndexHandler函數。

mux的Handler方法對URL簡單的處理,然后調用handler方法,后者會創建一個鎖,同時調用match方法返回一個handler和pattern。

在match方法中,mux的m字段是map[string]muxEntry圖,后者存儲了pattern和handler處理器函數,因此通過迭代m尋找出注冊路由的patten模式與實際url匹配的handler函數並返回。

返回的結構一直傳遞到mux的ServeHTTP方法,接下來調用handler函數的ServeHTTP方法,即IndexHandler函數,然后把response寫到http.RequestWirter對象返回給客戶端。

上述函數運行結束即serverHandler{c.server}.ServeHTTP(w, w.req)運行結束。接下來就是對請求處理完畢之后上希望和連接斷開的相關邏輯。

至此,Golang中一個完整的http服務介紹完畢,包括注冊路由,開啟監聽,處理連接,路由處理函數。
多數的web應用基於HTTP協議,客戶端和服務器通過request-response的方式交互。一個server並不可少的兩部分莫過於路由注冊和連接處理。Golang通過一個ServeMux實現了的multiplexer路由多路復用器來管理路由。同時提供一個Handler接口提供ServeHTTP用來實現handler處理其函數,后者可以處理實際request並構造response。

ServeMux和handler處理器函數的連接橋梁就是Handler接口。ServeMux的ServeHTTP方法實現了尋找注冊路由的handler的函數,並調用該handler的ServeHTTP方法。ServeHTTP方法就是真正處理請求和構造響應的地方。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM