轉載自:http://blog.csdn.net/zrc199021/article/details/54020692
關於所在節點核數怎么看?
======================================================================
# 總核數 = 物理CPU個數 X 每顆物理CPU的核數
# 總邏輯CPU數 = 物理CPU個數 X 每顆物理CPU的核數 X 超線程數
# 查看物理CPU個數
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l
# 查看每個物理CPU中core的個數(即核數)
cat /proc/cpuinfo| grep "cpu cores"| uniq
# 查看邏輯CPU的個數
cat /proc/cpuinfo| grep "processor"| wc -l
======================================================================
spark資源主要就是core和memery。
spark主題功能分三部分:spark RDD,sparkSQL,spark shell,如果每個部分的功能都要用,那么每塊都要占用資源。
其中,spark RDD和spark shell 是動態分配占用資源的,sparkSQL是靜態分配資源的(啟動后即一直占着分配的資源)
spark分配的總體資源在哪里看?
- cat /home/mr/spark/conf/spark-env.sh
- JAVA_HOME=/usr/java/jdk
- SPARK_HOME=/home/mr/spark
- SPARK_PID_DIR=/home/mr/spark/pids
- SPARK_LOCAL_DIRS=/data2/zdh/spark/tmp,/data3/zdh/spark/tmp,/data4/zdh/spark/tmp
- SPARK_WORKER_DIR=/data2/zdh/spark/work
- SPARK_LOG_DIR=/data1/zdh/spark/logs
- SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18088-Dspark.history.retainedApplications=500"
- SPARK_MASTER_WEBUI_PORT=18080
- SPARK_WORKER_WEBUI_PORT=18081
- SPARK_WORKER_CORES=25
- SPARK_WORKER_MEMORY=150g
- SPARK_DAEMON_MEMORY=2g
- SPARK_LOCAL_HOSTNAME=`hostname`
- YARN_CONF_DIR=/home/mr/yarn/etc/hadoop
SparkSQL的總體資源在哪看?
- [root@vmax47 conf]# cat sparksql-defaults.conf
- spark.serializer=org.apache.spark.serializer.KryoSerializer
- spark.driver.extraJavaOptions=-Xss32m-XX:PermSize=128M-XX:MaxPermSize=512m
- spark.driver.extraClassPath=/home/mr/spark/libext/*
- spark.executor.extraClassPath=/home/mr/spark/libext/*
- spark.executor.memory=10g
- spark.eventLog.enabled=true
- spark.eventLog.dir=/data1/zdh/spark/logs/eventLog
- spark.history.fs.logDirectory=/data1/zdh/spark/logs/eventLog
- spark.worker.cleanup.enabled=true
- spark.shuffle.consolidateFiles=true
- spark.ui.retainedJobs=200
- spark.ui.retainedStages=200
- spark.deploy.retainedApplications=100
- spark.deploy.retainedDrivers=100
- spark.speculation=true
- spark.speculation.interval=1000
- spark.speculation.multiplier=4
- spark.speculation.quantile=0.85
- spark.shuffle.service.enabled=false
- spark.dynamicAllocation.enabled=false
- spark.dynamicAllocation.minExecutors=0
- spark.dynamicAllocation.maxExecutors=2147483647
- spark.sql.broadcastTimeout=600
- spark.yarn.queue=mr
- spark.master=spark://vmax47:7077,SPARK49:7077
- spark.deploy.recoveryMode=ZOOKEEPER
- spark.deploy.zookeeper.url=SPARK49:2181,HADOOP50:2181,vmax47:2181
- spark.ui.port=4100
- spark.driver.memory=40G
- spark.cores.max=30
查看Spark資源可從18080端口查看:
