引自官方: Transfer Learning tutorial
Ng在Deeplearning.ai中講過遷移學習適用於任務A、B有相同輸入、任務B比任務A有更少的數據、A任務的低級特征有助於任務B。對於遷移學習,經驗規則是如果任務B的數據很小,那可能只需訓練最后一層的權重。若有足夠多的數據則可以重新訓練網絡中的所有層。如果重新訓練網絡中的所有參數,這個在訓練初期稱為預訓練(pre-training),因為事先利用任務A的權重初始化。在預訓練的基礎上更新權重,那么這個過程叫微調(fine tuning)。微調有兩種方式:全局、局部。全局微調:在預訓練的基礎上重新更新所有權重。局部微調:例如凍結卷積層的權重,另其為特征提取器,而只更新最后的一兩層全連接。這也是遷移學習的兩種方式。
下面分別討論這兩種學習方式:
問題描述:螞蟻和蜜蜂的二分類,利用resnet18預訓練。
一. 全局微調
1. Load Dada
利用 torchvision.datasets.ImageFolder 實現,即需要將每一類的所有圖片單獨放到每一個文件夾下,文件夾的命名即為類名。這里將數據設置為訓練集與驗證集,采用字典的形式。

data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), # 裁剪到224,224 transforms.RandomHorizontalFlip(), # 隨機水平翻轉給定的PIL.Image,概率為0.5。即:一半的概率翻轉,一半的概率不翻轉。 transforms.ToTensor(), # 把一個取值范圍是[0,255]的PIL.Image或者shape為(H,W,C)的numpy.ndarray,轉換成形狀為[C,H,W],取值范圍是[0,1.0]的FloadTensor transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), # 同時進行transform data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} # 訓練集與驗證集數量
class_names = image_datasets['train'].classes # 樣本類別名(子文件夾名) use_gpu = torch.cuda.is_available() # 檢驗是否可用cuda
2. Visualize a few images
可視化一個批量數據,利用 torchvision.utils.make_grid 實現。
此時make_grid的輸入仍為Tensor(C,W,H),而imshow的時候要轉回(W,H,C)。而后要乘以方差並加上均值。注意之前的的預處理(減均值除方差)操作應該只是在一個batch上進行的,並非在全部樣本上操作。
def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # 取一個abtch的樣本操作 # Make a grid from batch out = torchvision.utils.make_grid(inputs) # 此時的輸入為Tensor imshow(out, title=[class_names[x] for x in classes])
3. Traning the model
這里的主要操作有:Scheduling the learning rate(規划學習率)、Saving the best model(保存最優模型)
先介紹 scheduler 的用法:
optim模塊除了常規的用法外(一個參數組):
optim.SGD(model.parameters(), lr=1e-2, momentum=.9)
還可以制定任意一層的學習率(多個參數組):下面為兩個參數組
optim.SGD([ {'params': model.base.parameters()}, {'params': model.classifier.parameters(), 'lr': 1e-3} ], lr=1e-2, momentum=0.9)
那么多個參數組如何進一步調整學習率呢?用到了 torch.optim.lr_scheduler ,它提供了幾種方法來根據epoches的數量調整學習率。有些優化算法已經擁有了學習率衰減參數lr_decay ,例如:
class torch.optim.Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0)
首先介紹: class torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
其中optimizer就是包裝好的優化器, lr_lambda即為操作學習率的函數。將每個參數組的學習速率設置為初始的lr乘以一個給定的函數。當last_epoch=-1時,將初始lr設置為lr。
>>> # Assuming optimizer has two groups. 這里假定有兩個參數組,固有兩個函數 >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95 ** epoch >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2]) # lambda的結果作為乘法因子與學習率相乘 >>> for epoch in range(100): >>> scheduler.step() # 在訓練的時候進行迭代 >>> train(...) >>> validate(...)
然后介紹: torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
其中optimizer就是包裝好的優化器,step_size (int) 為學習率衰減期,指幾個epoch衰減一次。gamma為學習率衰減的乘積因子。 默認為0.1 。當last_epoch=-1時,將初始lr設置為lr。
>>> # Assuming optimizer uses lr = 0.5 for all groups 假定初始的所有參數組學習率都為0.5 >>> # lr = 0.05 if epoch < 30 因為衰減器為30個epoch,所以沒夠30個epoch學習率乘以0.1 >>> # lr = 0.005 if 30 <= epoch < 60 >>> # lr = 0.0005 if 60 <= epoch < 90 >>> # ... >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1) >>> for epoch in range(100): >>> scheduler.step() >>> train(...) >>> validate(...)
好了,來看一下訓練的代碼吧:
def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) # 先深拷貝一份當前模型的參數,后面迭代過程中若遇到更優模型則替換 best_acc = 0.0 # 初始准確率 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': scheduler.step() # 訓練的時候進行學習率規划,其定義在下面給出 model.train(True) # Set model to training mode 設置為訓練模式 else: model.train(False) # Set model to evaluate mode 設置為測試模式 running_loss = 0.0 running_corrects = 0 # Iterate over data. for data in dataloaders[phase]: # get the inputs inputs, labels = data # wrap them in Variable if use_gpu: inputs = Variable(inputs.cuda()) labels = Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward outputs = model(inputs) _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.data[0] * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: # 當驗證時遇到了更好的模型則予以保留 best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) # 深拷貝模型參數 print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) # 載入最優模型參數 return model
4. Finetuning the convnet
model_ft = models.resnet18(pretrained=True) # model_ft即為含訓練好參數的殘差網絡 num_ftrs = model_ft.fc.in_features # 最后一個全連接的輸入維度,這里實為512 model_ft.fc = nn.Linear(num_ftrs, 2) # 將最后一個全連接由(512, 1000)改為(512, 2) 因為原網絡是在1000類的ImageNet數據集上訓練的 if use_gpu: model_ft = model_ft.cuda() # 將網絡里的變量也調用cuda criterion = nn.CrossEntropyLoss() # 多累交叉熵 # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # 單參數組 # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 每7個epoch衰減0.1倍
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
這里預訓練好的model_ft 就是一個model,可以查看其參數與結構:
print (model_ft) # 查看網絡結構 for name, para in model_ft.named_parameters(): # 查看網絡參數名字與尺寸 print(name,':', para.size())
5. Visualizing the model predictions
可視化預測結果:
def visualize_model(model, num_images=6): was_training = model.training # 檢驗是否是訓練模式 model.eval() # 模式設置為測試模式 images_so_far = 0 fig = plt.figure() for i, data in enumerate(dataloaders['val']): inputs, labels = data if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) outputs = model(inputs) _, preds = torch.max(outputs.data, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training)
二. 局部微調
ConvNet as fixed feature extractor
將conv的參數都固定,只調整全連接。
model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # 將所有參數求導設為否 # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) # 取代最后一個全連接 if use_gpu: model_conv = model_conv.cuda() criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opoosed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
需要注意的是:新構建的model的參數默認為 requires_grad=True !
model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
訓練結果比全局調優還好一些。