我們都知道,現在的服務器開發對於IO調度的優先級控制權已經不再依靠系統,都希望采用協程的方式實現高效的並發任務,如js、lua等在異步協程方面都做的很強大。
Python在3.4版本也加入了協程的概念,並在3.5確定了基本完善的語法和實現方式。同時3.6也對其進行了如解除了await和yield在同一個函數體限制等相關的優化。
event_loop 事件循環:程序開啟一個無限的循環,程序員會把一些函數注冊到事件循環上。當滿足事件發生的時候,調用相應的協程函數。
coroutine 協程:協程對象,指一個使用async關鍵字定義的函數,它的調用不會立即執行函數,而是會返回一個協程對象。協程對象需要注冊到事件循環,由事件循環調用。
task 任務:一個協程對象就是一個原生可以掛起的函數,任務則是對協程進一步封裝,其中包含任務的各種狀態。
future: 代表將來執行或沒有執行的任務的結果。它和task上沒有本質的區別
async/await 關鍵字:python3.5 用於定義協程的關鍵字,async定義一個協程,await用於掛起阻塞的異步調用接口。
【一】創建協程
首先定義一個協程,在def前加入async聲明,就可以定義一個協程函數。
一個協程函數不能直接調用運行,只能把協程加入到事件循環loop中。asyncio.get_event_loop方法可以創建一個事件循環,然后使用run_until_complete將協程注冊到事件循環,並啟動事件循環。
例如:
- import asyncio
- async def fun():
- print('hello word')
- loop = asyncio.get_event_loop()
- loop.run_until_complete(fun())

【二】任務對象task
協程對象不能直接運行,在注冊事件循環的時候,其實是run_until_complete方法將協程包裝成為了一個任務(task)對象。所謂task對象是Future類的子類。保存了協程運行后的狀態,用於未來獲取協程的結果。
例如:
- import asyncio
- async def fun():
- print('hello word')
- return 'miao'
- loop = asyncio.get_event_loop()
- task = loop.create_task(fun())
- print(task)
- loop.run_until_complete(task)
- print(task)

創建task后,task在加入事件循環之前是pending狀態,因為do_some_work中沒有耗時的阻塞操作,task很快就執行完畢了。后面打印的finished狀態。
asyncio.ensure_future 和 loop.create_task都可以創建一個task,run_until_complete的參數是一個futrue對象。當傳入一個協程,其內部會自動封裝成task,task是Future的子類。isinstance(task, asyncio.Future)將會輸出True。
【三】綁定回調
在task執行完畢的時候可以獲取執行的結果,回調的最后一個參數是future對象,通過該對象可以獲取協程返回值。如果回調需要多個參數,可以通過偏函數導入。
例如:
- import asyncio
- async def fun():
- print('hello word')
- return 'miao'
- def callback(future):
- print('Callback: ', future.result())
- loop = asyncio.get_event_loop()
- task = loop.create_task(fun())
- #print(task)
- task.add_done_callback(callback)
- loop.run_until_complete(task)
- #print(task)

也可以使用ensure_future獲取返回值
例如:
- import asyncio
- async def fun():
- print('hello word')
- return 'miao'
- #def callback(future):
- #print('Callback: ', future.result())
- loop = asyncio.get_event_loop()
- #task = loop.create_task(fun())
- #task.add_done_callback(callback)
- task = asyncio.ensure_future(fun())
- loop.run_until_complete(task)
- print('the fun() return is: {}'.format(task.result()))

【四】await阻塞
使用async可以定義協程對象,使用await可以針對耗時的操作進行掛起,就像生成器里的yield一樣,函數讓出控制權。協程遇到await,事件循環將會掛起該協程,執行別的協程,直到其他的協程也掛起或者執行完畢,再進行下一個協程的執行。
耗時的操作一般是一些IO操作,例如網絡請求,文件讀取等。我們使用asyncio.sleep函數來模擬IO操作。協程的目的也是讓這些IO操作異步化。
例如:
- #coding:utf-8
- import asyncio
- import threading
- import time
- async def hello():
- print("hello 1")
- r = await asyncio.sleep(1)
- print("hello 2")
- def main():
- loop = asyncio.get_event_loop()
- print("begin")
- loop.run_until_complete(hello())
- loop.close()
- print("end")
- if __name__ == "__main__":
- main()

【五】3.6更新
①可以在同一個協程函數中同時使用await和yield
例如:
- import asyncio
- async def ticker(delay, to):
- for i in range(to):
- yield i
- await asyncio.sleep(delay)
- async def run():
- async for i in ticker(1, 10):
- print(i)
- loop = asyncio.get_event_loop()
- try:
- loop.run_until_complete(run())
- finally:
- loop.close()

順帶一提,yield 我們可以暫且認為是一種中斷機制(詳情可以參考官方文檔,這種解釋只是便於說明await)
例如:
- def a():
- print("first")
- yield
- print("second")
- yield
- print("end")
- yield
- if __name__ == "__main__":
- g1=a()
- print("next1")
- g1.__next__()
- print("next2")
- g1.__next__()
- print("next3")
- g1.__next__()

②允許在協程函數中異步推導式
例如:
- async def ticker(delay, to):
- for i in range(to):
- yield i
- await asyncio.sleep(delay)
- async def run():
- result = [i async for i in ticker(1, 10) if i%2]
- print(result)
- import asyncio
- loop = asyncio.get_event_loop()
- try:
- loop.run_until_complete(run())
- finally:
- loop.close()

【六】協程並發
定義tasks時可以設置多個ensure,也可以像多線程那樣用append方法實現
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- for i in range(4, 6):
- tasks.append(asyncio.ensure_future(do_some_work(i)))
當遇到阻塞時可以使用await讓其他協程繼續工作
例如:
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(3)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- for i in range(4, 6):
- tasks.append(asyncio.ensure_future(do_some_work(i)))
- loop = asyncio.get_event_loop()
- start = now()
- loop.run_until_complete(asyncio.wait(tasks))
- for task in tasks:
- print('Task ret: ', task.result())
- print('TIME: ', now() - start)

通過運行時間可以看出aysncio實現了並發。asyncio.wait(tasks) 也可以使用 asyncio.gather(*tasks) ,前者接受一個task列表,后者接收一堆task。
【七】協程嵌套
使用async可以定義協程,協程用於耗時的io操作,我們也可以封裝更多的io操作過程,這樣就實現了嵌套的協程,即一個協程中await了另外一個協程,如此連接起來。
例如:
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- async def main():
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- dones, pendings = await asyncio.wait(tasks)
- for task in dones:
- print('Task ret: ', task.result())
- start = now()
- loop = asyncio.get_event_loop()
- loop.run_until_complete(main())
- print('TIME: ', now() - start)

如果使用的是 asyncio.gather創建協程對象,那么await的返回值就是協程運行的結果。
- #dones, pendings = await asyncio.wait(tasks)
- #for task in dones:
- #print('Task ret: ', task.result())
- results = await asyncio.gather(*tasks)
- for result in results:
- print('Task ret: ', result)

不在main協程函數里處理結果,直接返回await的內容,那么最外層的run_until_complete將會返回main協程的結果。
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- async def main():
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- return await asyncio.gather(*tasks)
- start = now()
- loop = asyncio.get_event_loop()
- results = loop.run_until_complete(main())
- for result in results:
- print('Task ret: ', result)
- print('TIME: ', now() - start)

或者返回使用asyncio.wait方式掛起協程。
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- async def main():
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- return await asyncio.wait(tasks)
- start = now()
- loop = asyncio.get_event_loop()
- done, pending = loop.run_until_complete(main())
- for task in done:
- print('Task ret: ', task.result())
- print('TIME: ', now() - start)

也可以使用asyncio的as_completed方法
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- async def main():
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- for task in asyncio.as_completed(tasks):
- result = await task
- print('Task ret: {}'.format(result))
- start = now()
- loop = asyncio.get_event_loop()
- done = loop.run_until_complete(main())
- print('TIME: ', now() - start)

由此可見,協程的調用和組合十分的靈活,我們可以發揮想象盡情的浪
【八】協程停止
future對象有幾個狀態:
Pending
Running
Done
Cancelled
創建future的時候,task為pending,事件循環調用執行的時候當然就是running,調用完畢自然就是done,如果需要停止事件循環,就需要先把task取消。可以使用asyncio.Task獲取事件循環的task
例如:
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- start = now()
- loop = asyncio.get_event_loop()
- try:
- loop.run_until_complete(asyncio.wait(tasks))
- except KeyboardInterrupt as e:
- print(asyncio.Task.all_tasks())
- for task in asyncio.Task.all_tasks():
- print(task.cancel())
- loop.stop()
- loop.run_forever()
- finally:
- loop.close()
- print('TIME: ', now() - start)
啟動事件循環之后,馬上ctrl+c,會觸發run_until_complete的執行異常 KeyBorardInterrupt。然后通過循環asyncio.Task取消future

True表示cannel成功,loop stop之后還需要再次開啟事件循環,最后在close,不然會報錯。
循環task,逐個cancel是一種方案,可是正如上面我們把task的列表封裝在main函數中,main函數外進行事件循環的調用。這個時候,main相當於最外出的一個task,那么處理包裝的main函數即可。
- import asyncio
- import time
- now = lambda: time.time()
- async def do_some_work(x):
- print('Waiting: ', x)
- await asyncio.sleep(x)
- return 'Done after {}s'.format(x)
- async def main():
- coroutine1 = do_some_work(1)
- coroutine2 = do_some_work(2)
- coroutine3 = do_some_work(4)
- tasks = [
- asyncio.ensure_future(coroutine1),
- asyncio.ensure_future(coroutine2),
- asyncio.ensure_future(coroutine3)
- ]
- done, pending = await asyncio.wait(tasks)
- for task in done:
- print('Task ret: ', task.result())
- start = now()
- loop = asyncio.get_event_loop()
- task = asyncio.ensure_future(main())
- try:
- loop.run_until_complete(task)
- except KeyboardInterrupt as e:
- print(asyncio.Task.all_tasks())
- print(asyncio.gather(*asyncio.Task.all_tasks()).cancel())
- loop.stop()
- loop.run_forever()
- finally:
- loop.close()

【九】不同線程的事件循環
很多時候,我們的事件循環用於注冊協程,而有的協程需要動態的添加到事件循環中。一個簡單的方式就是使用多線程。當前線程創建一個事件循環,然后在新建一個線程,在新線程中啟動事件循環。當前線程不會被block。
- import asyncio
- import time
- now = lambda: time.time()
- from threading import Thread
- def start_loop(loop):
- asyncio.set_event_loop(loop)
- loop.run_forever()
- def more_work(x):
- print('More work {}'.format(x))
- time.sleep(x)
- print('Finished more work {}'.format(x))
- start = now()
- new_loop = asyncio.new_event_loop()
- t = Thread(target=start_loop, args=(new_loop,))
- t.start()
- print('TIME: {}'.format(time.time() - start))
- new_loop.call_soon_threadsafe(more_work, 6)
- new_loop.call_soon_threadsafe(more_work, 3)
啟動上述代碼之后,當前線程不會被block,新線程中會按照順序執行call_soon_threadsafe方法注冊的more_work方法,后者因為time.sleep操作是同步阻塞的,因此運行完畢more_work需要大致6 + 3

【十】新線程協程
新線程協程的話,可以在主線程中創建一個new_loop,然后在另外的子線程中開啟一個無限事件循環。主線程通過run_coroutine_threadsafe新注冊協程對象。這樣就能在子線程中進行事件循環的並發操作,同時主線程又不會被block。一共執行的時間大概在6s左右。
- import asyncio
- import time
- now = lambda: time.time()
- from threading import Thread
- def start_loop(loop):
- asyncio.set_event_loop(loop)
- loop.run_forever()
- async def do_some_work(x):
- print('Waiting {}'.format(x))
- await asyncio.sleep(x)
- print('Done after {}s'.format(x))
- def more_work(x):
- print('More work {}'.format(x))
- time.sleep(x)
- print('Finished more work {}'.format(x))
- start = now()
- new_loop = asyncio.new_event_loop()
- t = Thread(target=start_loop, args=(new_loop,))
- t.start()
- print('TIME: {}'.format(time.time() - start))
- asyncio.run_coroutine_threadsafe(do_some_work(6), new_loop)
- asyncio.run_coroutine_threadsafe(do_some_work(4), new_loop)

