『PyTorch』第十彈_循環神經網絡


RNN基礎:

『cs231n』作業3問題1選講_通過代碼理解RNN&圖像標注訓練

TensorFlow RNN:

『TensotFlow』基礎RNN網絡分類問題

『TensotFlow』基礎RNN網絡回歸問題

『TensotFlow』深層循環神經網絡

『TensotFlow』LSTM古詩生成任務總結

對於torch中的RNN相關類,有原始和原始Cell之分,其中RNN和RNNCell層的區別在於前者一次能夠處理整個序列,而后者一次只處理序列中一個時間點的數據,前者封裝更完備更易於使用,后者更具靈活性。實際上RNN層的一種后端實現方式就是調用RNNCell來實現的。

一、nn.RNN

import torch as t
from torch import nn
from torch.autograd import Variable as V

layer = 1

t.manual_seed(1000)
# 3句話,每句話2個字,每個字4維矢量
# batch為3,step為2,每個元素4維
input = V(t.randn(2,3,4))
# 1層,輸出(隱藏)神經元3維,輸入神經元4維
# 1層,3隱藏神經元,每個元素4維
lstm = nn.LSTM(4,3,layer)
# 初始狀態:1層,batch為3,隱藏神經元3
h0 = V(t.randn(layer,3,3))
c0 = V(t.randn(layer,3,3))

out, hn = lstm(input,(h0,c0))
print(out, hn)
Variable containing:
(0 ,.,.) = 
  0.0545 -0.0061  0.5615
 -0.1251  0.4490  0.2640
  0.1405 -0.1624  0.0303

(1 ,.,.) = 
  0.0168  0.1562  0.5002
  0.0824  0.1454  0.4007
  0.0180 -0.0267  0.0094
[torch.FloatTensor of size 2x3x3]
 (Variable containing:
(0 ,.,.) = 
  0.0168  0.1562  0.5002
  0.0824  0.1454  0.4007
  0.0180 -0.0267  0.0094
[torch.FloatTensor of size 1x3x3]
, Variable containing:
(0 ,.,.) = 
  0.1085  0.1957  0.9778
  0.5397  0.2874  0.6415
  0.0480 -0.0345  0.0141
[torch.FloatTensor of size 1x3x3]
)

二、nn.RNNCell

import torch as t
from torch import nn
from torch.autograd import Variable as V

t.manual_seed(1000)
# batch為3,step為2,每個元素4維
input = V(t.randn(2,3,4))
# Cell只能是1層,3隱藏神經元,每個元素4維
lstm = nn.LSTMCell(4,3)
# 初始狀態:1層,batch為3,隱藏神經元3
hx = V(t.randn(3,3))
cx = V(t.randn(3,3))

out = []

# 每個step提取各個batch的四個維度
for i_ in input:
    print(i_.shape)
    hx, cx = lstm(i_,(hx,cx))
    out.append(hx)
t.stack(out)
torch.Size([3, 4])
torch.Size([3, 4])
Variable containing:
(0 ,.,.) = 
  0.0545 -0.0061  0.5615
 -0.1251  0.4490  0.2640
  0.1405 -0.1624  0.0303

(1 ,.,.) = 
  0.0168  0.1562  0.5002
  0.0824  0.1454  0.4007
  0.0180 -0.0267  0.0094
[torch.FloatTensor of size 2x3x3]

三、nn.Embedding

embedding將標量表示的字符(所以是LongTensor)轉換成矢量,這里給出一個模擬:將標量詞embedding后送入rnn轉換一下維度。

import torch as t
from torch import nn
from torch.autograd import Variable as V

# 5個詞,每個詞使用4維向量表示
embedding = nn.Embedding(5, 4)
# 使用預訓練好的詞向量初始化
embedding.weight.data = t.arange(0, 20).view(5, 4)  # 大小對應nn.Embedding(5, 4)

# embedding將標量表示的字符(所以是LongTensor)轉換成矢量
# 實際輸入詞原始向量需要是LongTensor格式
input = V(t.arange(3, 0, -1)).long()
# 1個batch,3個step,4維矢量
input = embedding(input).unsqueeze(1)
print("embedding后:",input.size())

# 1層,3隱藏神經元(輸出元素4維度),每個元素4維
layer = 1
lstm = nn.LSTM(4, 3, layer)
# 初始狀態:1層,batch為3,隱藏神經元3
h0 = V(t.randn(layer, 3, 3))
c0 = V(t.randn(layer, 3, 3))
out, hn = lstm(input, (h0, c0))
print("LSTM輸出:",out.size())
embedding后: torch.Size([3, 1, 4])
LSTM輸出: torch.Size([3, 3, 3])

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM